LECTURE NOTES

ON

MATHEMATICS-II

ACADEMIC YEAR 2022-23

I B.TECH -I SEMISTER(R20)

K.V.NARAYANA, Associate Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

VSM COLLEGE OF ENGINEERING

RAMACHANDRAPURAM

E.G DISTRICT-533255

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Voor II Compostor		L	T	P	С
I Year - II Semester		3	0	0	3
MATHEMATICS-II					

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Eliminationmethod – Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms: (10hrs)

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

(8 hrs)

Introduction—Bisection method—Secant method — Method of false position—Iteration method — Newton-Raphson method (One variable and simultaneous Equations) — Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

(10 hrs)

Introduction— Errors in polynomial interpolation — Finite differences— Forward differences—Backward differences—Central differences — Relations between operators — Newton's forward and backward formulae for interpolation — Interpolation with unequal intervals — Lagrange's interpolation formula—Newton's divide difference formula.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's $1/3^{rd}$ and $3/8^{th}$ rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B. V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- **1. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- **2. M. K. Jain, S.R.K. Iyengar and R.K. Jain,** Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- **3.** Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

VSM COLLEGE OF ENGINEERING

RAMACHANDRAPRUM-533255 DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title	Year-Sem	Branch	Contact Periods/Week	Sections
Mathematics-II	1-2	Electrical & electronics Engineering	6	-

COURSE OUTCOMES: At the end of the course, the student will be able to

- 1. Develop the use of matrix algebra techniques that is needed by engineers for practical applications(K2)
- 2. Solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel(K1)
- 3. Evaluate the approximate roots of polynomial and transcendental equations by differentalgorithms (K3)
- 4. Apply Newton's forward & backward interpolation and Lagrange's formulae for equal andunequal intervals (K2)
- 5. Apply numerical integral techniques to different Engineering problems (K3)
- **6.** Apply different algorithms for approximating the solutions of ordinary differential equations withinitial conditions to its analytical computations (K4)

Uni t/ ite m No.	Outcomes	Торіс	Number of periods	Total perio ds	Book Refere nce	Delivery Method
1	CO1: Solving systems of linear equations, Eigen values and Eigen vectors	UNIT-1 1.1 Rank of a matrix by echelon for and normal form 1.2 Solving system of homogeneous and 1.3 non-homogeneous linear equations 1.4 Gauss Eliminationmethod. 1.5 Eigen values and Eigen vectors and properties	2 2 2	10	T1,T 3, R2	Chalk & Talk, & Tutorial
2	CO2: Cayley—Hamilton theorem and Quadratic forms	2.1 Cayley-Hamilton theorem (without proof) — Applications 2.2 Finding the inverse and power of matrix by Cayley-Hamilton theorem 2.3 Reduction to Diagonal form Quadratic forms and nature of t quadratic forms 2.4 Reduction of quadratic form canonical forms by orthogor transformation. 2.5 Singular values of a matrix, singular value decomposition	n	10	T1,T3, R2	Chalk & Talk, & Tutorial

3	CO3: Iterative methods	3.1	Introduction Bisection method	2			
		3.2	Secant method	2			
		3.3	Method of false position	2	15	T1,T3, R2	Chalk &
		3.4	Iteration method	2			Talk, & Tutorial
		3.5	Newton- Raphson method (One variable and simultaneous Equations)	3			
		3.6	Jacobi and GaussSeidel methods for solving system of equations numerically	4			
			UNIT-4				
4	CO4: : Interpolation	4.1	Introduction— Errors in polynomial interpolation	2		T1,T3, R2	Chalk &
		4.2	Finitedifferences–Forward differences–Backward differences	4	15	ICZ	Talk, & Tutorial
		4.3	Central differences – Relations between operators	2			
		4.4	Newton's forward and backward formulae for interpolation	3			
		4.5	Interpolation with unequal intervals – Lagrange's interpolation formula	3			
		4.6	Newton's divide difference formula	1			
	GO.		UNIT-5				
5	Numerical differentiation and	5.1	Numerical differentiation using interpolating polynomial	1			
	integration, Solution of ordinary differential equations with initial	5.2	Trapezoidal rule	2	10	L	Chalk &
	conditions	5.3	Simpson's 1/3rd and 3/8th rule	2	10	T1,T3, R2	Talk, Tutorial
		5.4	Solution of initial value problems by Taylor's series	2]		i utoriai
		5.5	Picard's method of successive approximations	1]		
		5.6	Problems on Filters	1			
		5.7	Euler's method –Runge-Kutta method (second and fourth order)	1			

LIST OF TEXT BOOKS AND AUTHORS

Text Books:

- 1. B.S Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B.V.Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw HillEducation.
- 3. David Poole, Linear Algebra- A modern introduction, 4 thEdition, Cengage.

Reference Books:

R1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education. R2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.

R3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

Faculty Member Hea

Head of the Department

PRINCIPAL

amoren a unit-1100 prodices in

Linear System of Equations

Real and complex matrices and linear system of Equation

Matniz Definition:

A System of mn numbers (neal and complex) arranged in the form of an ordered set m rows, each now consisting of an ordered numbers between [] or () or 1111111788 called a matrix of order (or) type mxn

Each of mn numbers constituting the Thus we write a mother

Thus we white a mather

an an - $\begin{vmatrix} a_{21} - a_{22} - a_{21} - a_{22} \end{vmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$ stitom time a pallo - 91 - 1- 1- 1- 1- 1 amı am2 - - [- amn]

mxn $1 \le j \le n$ on oclation to a matrix, we call the numbers as a scalans.

Type of Matrices 1) A H

Definition:

1. If A = [aij] mxn and m=n, then A is called a motion A of order . square matrix A square matrix A of order

nxn is something called as a n-rowed motor, A (or) symply a square matrix of order n Eig:- [1 1] is and order motrin

2. A matrex which is not a square matrix is called a rectangular matrix MATTER ESPORTANT

Eg:- [i -1 2] es a 2x3 matrez

3. A matrez of orden 1 xm is called a row

Eg: - [1 2 3] ixi3

4. A matrix of order nx1 is colled a column

matrix

Eg: - [2]

3x1

* Row and column matrices are also colled as

row and column vectors nespectively 5. If A = [asj]nxn such that asj = 1 for i=j and agj = o for itj, then A is colled a unit motrix

It is denoted by In.

Eg: $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $I_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

6. If A=[a:j] mxn such that a:j = 0 & rand j then A PS called zero motrex tor) a NULL motrex. It is denoted by 'o' (or) more clearly

Imx 1

Eg: 12x3 = [0 0 0] 2x3

=> Biagonal element of a square matrix and. Principal diagonal Defenetion:-

1. In a matrex A = [agj]nxn, the elements agj of A for which i=j (i.e., ag1, azz --- ann) are called the diagonal element of A. The line along which the diagonal elements lie is called the Principal diagonal of A.

2. A square matiex of all whose element except those en leading diagonal ore zero is called diagonal motrez. If diida - dn are diagonal element of a dragonal matrex A. then A is written as

 $A = d_{1}^{2}ag(d_{1}, d_{2}, ... - d_{n})$ $Ex: -A = d_{1}^{2}ag(3, 1, -2) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

3. A dragonal matrix whose leading dragonal elements are equal is colled a scalar matrix.

Ex:
$$B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & b \\ 0 & 0 & 3 \end{bmatrix}$$

Couple Machon:

Equal fratrex:

Two matrices A = [aij] and B = [bij] ore

said to be equal if and only if =) A&B are of the same type (or order)

To state the best a con oblin x.

=) ag = bij for every i and ji

Algebra of fratrices: Let A = [aij] mxn, B = [bij] mxn between be two matrix c=[(qj] mxn where Cij = aij + bij is called the sum of the motrices A and B the sum of A and Bis called and denoted by AtB Thus [aij]mxn + [bij]mxn = [aij+bij]mxn and [asj] mxn + [bij] mxn If A.B are two matrices of the same type Difference of two matrices. (order) then A+(-B) Ps taken as A-B Multiplecation of a motrez by a scalar Let A be a matrex. The Motrex oblarmed by matrix multiplying every element of A by k and a scalar is called the product of A by k and ps denoted by KAlor) AK Thus of A = [aij] mxn, then KA = [Kaij] mxn and [Kaqi] mxn = K[aqj] mxn = KA Properties:

Properties:

OA = o(null matrix), (-1) A = -A, called the negative of A: $k_1(k_2A) = (k_1k_2)A = k_2(k_1A)$ where k_1k_2 ore $k_1(k_2A) = (k_1k_2)A = k_2(k_1A)$ scalars

> KA = 0 => A = 0 if k ≠ 0

Scanned with CamScanner

ev) k, A = K2A and A is not a null motrix => K, = Kg Matrix fultiple cation

Let A = [a:k] mxn and B = [bkj] nxp, then the matrex c= [coj] mxp where coj = = ask bkj is called the product of the matrices A and B in that order and we write c = AB

In the product AB, the matrox A is called the pre-factor and B the post-factor If the number of coloumns of A is

equal to the number of rows in B then the motrices are said to be comfortable for multiplecation en that orden

Positive Integral powers of square motrices. Let A be a square matrez then A295 defened as A.A. Now, by the Assocrative low

somplarly we have AA M-1 = AM-1A = AM where m is a positive integer Further we have AMAn = Amon and (AM) n = Amn where m,n ore positive integer

In = I ; on = o

Trace of a Square Matrex

Let A = [agj] nxm then -trace of the square matrix A is define as & are and is denoted by tr(A) a mile grant of Thus tr(A) = \(\int \alpha \alpha \graphi = \alpha_{11} + \alpha_{22} + -- - + \alpha_{nn} \)

ore square matrices of other n If A and B are square mand I is any scalar, then

=) tr(IA) = LtrA =) tr(A+B) = trA + trB

 \Rightarrow tr(AB) = tr(BA)

F 1 W 1 1 Triangulan Matrix

A square matrix all of whose elemen below the leading dragonal are zero is called an upper trangular matrix. A square matrix all of whose elements above the leading dragonal are

zero is called a lower triangular motrizi

es cuite 2 1 - 3 0 0 1 95 an opper treangular matrex

5 3 0 0 0 0 is an lower triangular
-4 6 0 0 0 matrix
2 +1-8 5 0

- => 9f A is a square matrix such that A2=A then A is called idempotent
- → 9f A is a square motrix such that Am=0 where M is a positive integer, then A is. colled Nelpotent. If M is least positive integer such that Am = 0, them A is called 'Nalpotent
 - of inder M.

 If A is a square matrix such that A== I then A is called involuntery of halles or lived The transpose of a Matrix Definition:

the matrix obtained from any goven matrix A by inter changing its nows and columns is called the transpose of A. It is denoted by A or AT 9f A = [a:j]mxn; then the transpose of A is A' = [bj:] nxm , where bj: - a;

Also (A1) h= Attom stouper and stilf A' and B' be the transpose of A' and B, respec, trively, then Entrance - 1

 \Rightarrow (A')' = A

=) (A+B)' = A'+B', A and B being of the.

=) (kA) "= (kA), 1K) " scalan + 11A 110 - 1A1

=) (AB)' = B'A', AlB being comformable for multiplecation in Einter & BEID

Determinants:

Minars and co-factors of a square Matrix

let n = [aij] nxm be a square matrex. when from A the elements of th row and jth column are deleted the determinant of (n-1) nows motres my is called the minor of agi of A and is denoted by Imeyl. The signed menor (-1)-iti [Mill is called the co-factor of asi and is Red CIA O IS STORED IN

denoted by Arj Thus $9f A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then

1A1 = a11 /M11 + a12 /M12), + a13 / M13) = a11 An +1a12 A112 + a13 A13

defende as. |A| = a21A21 + a22A22 + a23 A23 = a31 A31+a32 A32

+033 A33

(or) To provide to the condition of the (vo) |A| = a11 A11 + a21 A21 + a31 A31 = 1 a12 A12 + a22 A22.

1010 place profeso + 0 32'A32 AJA 10'8 1 (CA)

= 013 A 13 + 023 A 23 + 033 A 331

I to be good age it . . with you

Therefore in a detenminant the sum of the products of the elements of ony row or column with their are corresponding co-foctors is called to the value of the determinant 2. If A is a square matrix of order n then. IKAl = KMIAL, where k is a scalon 3. 98 A 88 a square matrex of orden no then The sen look thus 1Al = lATI
4. 9F A and B be two square smatraces of the some order than IABI = IAI. IBI * Adjoint of a square Matriz let A be a square matrix of order n The transpose of the matrix got from A by replacing the elements of A by the corresponding co-factors is colled the adjoint of A and is denoted by odj A Note: For any scalan K, adj (KA) = Kn-1 adj A * Singular and fron - singular matrices: Definations: A square matrix A is is said to be

A square matrix A is said to singular if IAI = 0 if IAI = 0, then A is said to be non-singular thus only non-singular matrix possess inverses.

x. 3 c At in it. I was a sound in the star.

the total the same of the former and the second the same of the second the seco Note: ... 9f A.B are non-singular then AB, the production 95 also non-songular motrores os also non singulari into the winter arrange is as in the Inverse of a Matrix:

let A be any square matrix Britis exsists such that AB = BA = I, then B is called enverse of A and is denoted by A-1 For AB, BA to be both defined and equal Note: -It is necessary that A and B are both square matrices of same orden thus a non-square matrices of sunt have invense to segund sit Inventable sold to be enverting if et Possas Priversa Rule (Determinant)

Crammer's Rule (Determinant) The Solution of the system of Innear equation $a_1x + b_1y + c_1 z = d_1$; $a_2x + b_2y + c_2z = d_2$; $a_3x + b_3y + c_3z = d_3$; is given by $a_3x + b_3y + c_3z = d_3$; $a_3x + b_3y + c_3z = d_3$;

x = 1 = 7 = A2; z = 13 (a +0), where

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \quad \Delta_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

$$\Delta_{2} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix}; \quad \Delta_{3} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$$

we notice that Δ1, Δ2 · Δ3 are the determinant obtained from Δ on replacing the 1st, 2nd and 3rd Columns by d' values respectively

Symmetric + fratrix:

A square matrex 'A' = [arj].es saed to be symmetric of arj = aj; for every and j Thus, A is a symmetric matrex () A = A' or

Skew - Symmetric Matrix

A square matrix A = [aij] is said to be skew Symmetric if aij = aji, for every i and j thus A is a skew symmetric matrix A = A A = A

Note:

Every diagonal element of a skew-symmetric matrix is necessarily zero since

$$aii = -a_{ii} \implies a_{ii} = 0$$

$$Ex : \begin{cases} a, h, g \\ h, b, f \end{cases}$$

$$\begin{cases} f, g \end{cases} \Rightarrow a_{ii} = 0$$

$$\begin{cases} a, h, g \end{cases}$$

$$\begin{cases} f, g \end{cases} \Rightarrow a_{ii} = 0$$

$$\begin{cases} f,$$

o a -b is a skew - symmetric matrix
b -c o Properties: 1) * A 95 symmetric * KA is symmetric 2) A. is Skew - Symmetric brokA. 15 skew- symmetric A square matrix 'A' Ps said to be Orthogonal fratrix orthogonal IAA = A'A = II. that is AT = A-1 (bie) from in Solved Examples many 1. proved that \[\frac{1}{3} \frac{2}{3} \frac{2}{3} \] Ps orthogonal $\frac{2}{3}$ $\frac{1}{3}$ $\frac{-2}{3}$ 01 [10] - 3 x31 n3 noupe

oddined mar daniel

A. AT =
$$\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}$$

Girven matrix ps not an orthogonal 3. Find the values of A, B and c when $\begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal Solut let $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$, $A^{T} = \begin{bmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{bmatrix}$ $A \cdot A^{T} = \begin{bmatrix} 0 & 2b & C \\ a & b & C \end{bmatrix} \begin{bmatrix} 0 & a & a \\ 2b & b & -b \end{bmatrix}$ $= \begin{bmatrix} 0+4b^{2}+c^{2} & 0+9b^{2}-c^{2} \\ 0+2b^{2}-c^{2} & a^{2}+b^{2}+c^{2} \\ 0-2b^{2}+c^{2} & a^{2}-b^{2}-c^{2} \end{bmatrix}$ 80-262+c21 1 a2 - b2 c2 Greven that A.AT = I3 $= \begin{bmatrix} 4b^{2}+c & 2b^{2}-c^{2} & -2b^{2}+c^{2} \\ 2b^{2}-c^{2} & \alpha^{2}+b^{2}+c^{2} & \alpha^{2}-b^{2}-c^{2} \\ -2b^{2}+c^{2} & \alpha^{2}-b^{2}-c^{2} & \alpha^{2}+b^{2}+c^{2} \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{array}{l} 2b^{2} - c^{2} = 0 \rightarrow 0 \\ a^{2} - b^{2} - c^{2} = 0 \rightarrow 0 \\ 4b^{2} + c^{2} = 1 \rightarrow 3 \end{array}$ a2+b2+c2=1 -> 4 from $0 2b^2 - c^2 = 0$ $c^2 = 2b^2$ from ② $a^2 - b^2 = c^2 = 0$ | $a^2 = 3b^2$. $a^2 - b^2 - 2b^2 = 0$ | $a = \sqrt{3}b$

Scanned with CamScanner

Rank of a Matrix

* If A is a null matique we define its nonk

will be "zero". If A

* If A is a non zero matrix we say that R is the rank of A if the following conditions are satisfied

1. Every (1+1)th order minor of A is zero

2. There exsist atleast one ith order minor of A

3. Rank of A is denoted by CLA)

Note: * Every motrex well have a rank

* Rank of A matrix is unique

* Rank of A is 21 when A is a non-zero

* If A 95 a matnex of order mxn then rank of A

* If rank of A = r then every monor of A of order

(Y+1) or more is zero.

* rank of the Identity matrix In is in of order in and a is non.

singular (IAI to) then rank of A = n.

The state of the s

i)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$$
 ip) $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ 13 & 10 & 2 \end{bmatrix}$

$$\begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ 1 & 3 & 4 \end{pmatrix}$$

solul e) Greven matrex

Greven matrex
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 14 & 14 \\ 7 & 10 & 12 \end{bmatrix}$$

$$|A| = 1(u8 - u0) - 2(36 - 28) + 3(30 - 28)$$

$$= 8 - 16 + 6$$

$$(1A) = 3$$

$$(1A) = 3$$

$$(1A) = 3 - (2)$$

$$e(A) < 3$$
 $e(A) < 3$
 $e(A) < 3$

$$|A| = 3(u-u) + 1(-12+12) + 2(0,0) + 3(0) + 4(0) +$$

$$(v)$$
 $\begin{bmatrix} 1 & 2 & 3 \\ 3 & u & 5 \\ 1 & 5 & 6 \end{bmatrix}$

$$\begin{array}{c} v) \begin{cases} 2 & -1 & 3 & 1 \\ 1 & 4 & -2 \\ 5 & 2 & 4 & 3 \end{array}$$

Solul PPY) Greven motron

$$A = \begin{cases} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{cases}$$

$$= -1(18 \pm 5) - 0(9 + 5) + 6(3 + 30)$$

$$= -1(23) - 0 + 6(33)$$

$$= -23 + 198$$

$$141 = 195 \neq 0$$

$$\therefore (24) = 3$$

$$3 + 5 + 6$$

$$141 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$$

$$= 1(21) + 25 - 2(18 - 20) + 3(15 - 16)$$

$$= 1(-1) + 2(-2) + 3(-1)$$

$$= -1 + 4 - 3$$

$$141 = 0$$

$$(14) < 3$$

$$A \text{ minor of order } 2x2 \text{ of } A \text{ is } \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

$$= 4 - 6 = -2 \neq 0$$

$$111$$

Green molern

$$\begin{bmatrix}
2 & -1 & 3 & 1 \\
1 & 4 & -2 & 1 \\
5 & 2 & 4 & 3
\end{bmatrix}$$
Here A menor of 3x3 of $\frac{1}{4}$ 7 1A1 $\frac{1}{4}$ 4 -2 $\frac{1}{4}$ 5 3 4 $\frac{1}{4}$ 1 = 2 (16+4) +1(4+10) +3(2,-20) e(A) $\frac{1}{4}$ e(A) $\frac{1}{4}$ 3 $\frac{1}{4}$ = 3(20) +1(14) +3(-12)

$$= \frac{1}{4}$$
 = 0

A menor of order 3x2 of A $\frac{1}{4}$ 5 $\frac{1}{4}$ 3 $\frac{1}{4}$ $\frac{1}{4}$ = 0

A menor of order 3x3 of A $\frac{1}{4}$ 5 $\frac{1}{4}$ 3 $\frac{1}{4}$ $\frac{1}{4}$ 1 = 2 (-6-0) -3(12,-2) +1(16+0) $\frac{1}{4}$ = 10 $\frac{1}{4}$ 3 $\frac{1}{4}$ 1 = 2 (-6-0) -3(3-5) +1(4+10) $\frac{1}{4}$ = 2 (-10) -3(-2)+1(10) $\frac{1}{4}$ = 2 (-10) -3(-2)+1(10) $\frac{1}{4}$ = 2 (-10) -3(-2)+1(10) $\frac{1}{4}$ = 2 (-10) +3(-2)+1(12) $\frac{1}{4}$ 1 = 2 (-10) +3(-2)+1(-12) $\frac{1}{4}$ 1 = 2 (-10) +3(-2)+1(-12) $\frac{1}{4}$ 2 = 2 (-10) +3(-2)+1(-12) $\frac{1}{4}$ 1 = 2 (-6-12)

Scanned with CamScanner

Scanned with CamScanne

Now A monor of order 2x2 of A 95
$$\begin{vmatrix}
2 & -1 \\
1 & 4
\end{vmatrix} = 8 + 1 = 9 + 0$$

$$\ell(A) = 2$$

$$4b^{2} + c^{2} = 1$$

$$4b^{2} + 2b^{2} = 1$$

$$b^{2} = \frac{1}{6}$$

$$b = \frac{1}{\sqrt{6}}$$
African

$$C^{2} = 9b^{2} = 2 \cdot \frac{1}{63} = \frac{1}{3} = 0 = \frac{1}{\sqrt{3}}$$

$$0 = 13$$
, $b = \frac{1}{16}$, $c = \frac{1}{13}$

Date 26/11/2018

Conjugate of the Matrix The motrez obtained from any given motrix a ore replacing its elements by the co-orcs Ponding Conjugate Complex Numbers is called the Conjugate of A. It is denoted by A.

Y STOWN BAY

Figure of 11.

Ex:
$$A = \begin{cases} 2+37 & 0 & 1 \\ 7+2-37-3 & 1 \end{cases}$$

$$\bar{A} = \begin{bmatrix} 2-3i & 0 & -i \\ -i+2 & -2i-3 & 7 \end{bmatrix}$$

ovote;

1- If A and B be the conjugates of A and B respectively 1 All 1 hours 18

then
$$+(\bar{A}) = A$$

The transpose of the conjugate of a square matrix * If A is a square matrix and its conjugate is

* The transposed Conjugate of A is denoted by

* Therefore
$$(\overline{A})^T = (A^T) = A^O$$

En:
$$A = \begin{bmatrix} 5 & 3-1 & -21 \\ 6 & 1+1 & 4-1 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 3+i & 2i \\ 6 & 1-i & 4+i \end{bmatrix}$$

1. If At and Bo be the transposed conjugates of *f*Vote

A and B nespectively

$$* (A^{\theta})^{\theta} = A$$

*
$$(A\pm B)^{\theta} = A^{\theta} \pm B^{\theta}$$

* $(KA)^{\theta} = \overline{K}A^{\theta}$ where K is a complex γ umber.
* $(AB)^{\theta} = B^{\theta}.A^{\theta}$

-Etenmitian Matrix A square matrix A such that (A) T = A is called a Hermitian Matrix Ez: $A = \begin{bmatrix} 4 & 1+31 \\ 1-31 & 7 \end{bmatrix}$ $\Rightarrow A = \begin{bmatrix} 4 & 1-31 \\ 1+31 & 7 \end{bmatrix}$ (A) T = [4: 1+3] = A 1-3] = A thenmotion matrex Skew Henmitian matrix A square matrix A such that $A = \begin{bmatrix} -3i & 2i & 2i \\ -2i & -i \end{bmatrix}, \quad A = \begin{bmatrix} 3i & 2i \\ -2i & i \end{bmatrix}$ $\begin{bmatrix} A \end{pmatrix}^{T} = \begin{bmatrix} 3i & -2i \\ 2i & -i \end{bmatrix} = -A$ $\begin{bmatrix} A \end{pmatrix}^{T} = \begin{bmatrix} 3i & -2i \\ 2i & -i \end{bmatrix} = -A$: A is a skew-Henmitian Matrix 1. It should be noted that elements are the leading Note: en diagonals ormustilibe all zero or all are purely emagenary unstary Matrex

A square matrex A such that (A) T = A-1

i. AP. A = AAP = I is called a unitary matrix

TAP - B(AT)

28/11/12 If A and B are Hemmetian matrices prove Date AB-BA PS a Skew Hermitian Matreces Given that A. B are Henmitean matrices Solu $(\overline{A})^T = A$, $(\overline{B})^T = B$ $(\overline{AB} - BA)^T = (\overline{AB} - \overline{BA})^T$ = (AB) T - (BA) T (AB)T - (BA)T - (B)T(A)T-(A)T(B)T Jest dans . = BACTAB maps 1 (AB-BA) To -lab-BA) .. AB-BA is a skew- Henmitian funtrial If A is a Henmitian matrix prove that IA is solul since A is a Henmitian matrix xito (A) T = A => A 0 = A (A) (PA) PAR MO (PA) protect and the eternose - Part of one purely : 1A 95 a skew - Henmittan, matrix If A is a skew Henmeteon prove that MA is 3. If A is a skew Henmetian matrix

solul. Since A is a skew Henmetian matrix

A the A is a skew Henmetian matrix (iA) = 7 A0 (:A) = -9-A

```
i. in 13 Henmitson motrix
 4 show that every square mater is uniquely
     expressible at the sum of a Henmitson matrix
    ond a skew Hennellon motrix
since A is a square matrix
       (A+10)0 = A0-1(NO)0 = ND-1A
    (A+A0)0 = A+A0
    .. A-1 AO 33 a Henrytron motrox
       - 1/11/10) = p 95 also a Hemmetean matrex
        NOW (A-AD) = AO-(AO)0
                       AD-A
                       = (A-NO)
    : th-no) 13 a skew - Henmitian matrix
: = (A-AO) = 0 is also a skew trenmatian matrix
       P+A= = = (A+A0) = = (A-A0)
    .. A square matrox A PS unaquely expressible.
  a sum of Henmeteon and skews. Henmeteon matrez.
5. If A = \begin{bmatrix} 3 & 7-49 & -2751 \end{bmatrix} then show that \begin{bmatrix} -2-5i & 3-i & 4 \end{bmatrix}
  A 95 a Henmilion matrix and in is a skew
  Henmition matrix
```

(A+A0)0 = A0+(A0)0 A+A0 = $\begin{bmatrix} 3 & 7-49 & -2+59 \\ 7+49 & -2 & 3+9 \\ 2-51 & 3-9 & 4 \end{bmatrix}$ The modern 11 Greven matrix 11 $A = \begin{bmatrix} 3 & 7-41 & -2+31 \\ 7+41 & -2 & 371 \\ 2-51 & 371 & 4 \end{bmatrix}$ $\begin{pmatrix}
iA
\end{pmatrix} = \begin{bmatrix}
-3i & -7i+4 & +2i-3 \\
-7i-4 & 2i & -3i-1 \\
-2i+5 & -3i+1 & -4i
\end{bmatrix}$ $\begin{pmatrix}
iA
\end{pmatrix}^{T} = \begin{bmatrix}
-3i & -7i-y & -2i+5 \\
-7i+4 & 2i & -3i+1 \\
-7i+4 & 2i & -3i+1
\end{bmatrix}$ $\begin{pmatrix}
iA
\end{pmatrix} = \begin{bmatrix}
-3i & -7i-y & -2i+5 \\
-7i+4 & 2i & -3i+1 \\
2i-3 & -3i-1 & -4i
\end{bmatrix}$

Solution
$$\vec{h} = \begin{bmatrix} 3 & 7+4i, & -2-5i \\ 7-4i, & -2 & -2ii \end{bmatrix}$$

$$(\vec{h})^{T} = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4, \end{bmatrix}$$

$$\therefore \vec{h} \text{ is a Hermitron matrix}$$

$$1\vec{h} = \begin{bmatrix} 3i & 7i+4 & 2i-5 \\ -7i+5 & +3i+1 & 4i \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} -3i & -7i+4 & 2i-5 \\ -7i+5 & 2i & -3i-1 \\ +2i+5 & -3i+1 & -4i \end{bmatrix}$$

$$(\vec{h})^{T} = \begin{bmatrix} -3i & -7i-4 & 2i+5i \\ -7i+4 & 2i & -3i+1 \\ 2i-5 & -3i-1 & -4i \end{bmatrix}$$

$$= \begin{bmatrix} 3i & 7i+4 & 2i & -3i-1 \\ -2i+5 & -3i+1 & -4i \end{bmatrix}$$

$$= \begin{bmatrix} 3i & 7i+4 & 2i-3i-1 \\ -2i+5 & -3i+1 & -4i \end{bmatrix}$$

$$= \begin{bmatrix} 3i & 7i+4 & 2i-3i-1 \\ -2i+5 & 3+i & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3i & 7i+4 & 2i-3i-1 \\ -2i+5 & 3+i & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3i & 7i+4 & 2i-3i-1 \\ -7i+4 & 2i & -3i-1 \\ -7i+1 & -2i+1 \end{bmatrix}$$

$$= \begin{bmatrix} 3i & 7i+4 & 2i-3i-1 \\ -7i+1 & 2i-1 & -2i-1 \\ -7i & 2i-1 & -2i-1 \\ -1i & -4i & -4i \end{bmatrix}$$

Bolto Given matrix $\vec{h} = \begin{bmatrix} 1i & 2 & 5-5i \\ 9i & 9+i & 4+2i \\ -1+i & -4 & 7 \end{bmatrix}$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

$$\vec{h} = \begin{bmatrix} 1-i & 2 & 5+5i \\ -2i & 2-i & 4-2i \\ -1-i & -4 & 7 \end{bmatrix}$$

A+
$$A^0 = \begin{bmatrix} 1+1 & 2 & 5-5 \\ 29 & 919 & w127 \\ -1+1 & -u & 7 \end{bmatrix} + \begin{bmatrix} 1-1 & -29 & -1-9 \\ 2-1 & -1+1 & -u & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 9-2 & w-69 \\ 91+2 & 4 & 39 \\ w169 & -2.7 & 14 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 9-2 & w-69 \\ 91+2 & 4 & 39 \\ w169 & -2.7 & 14 \end{bmatrix}$$

$$= \begin{bmatrix} 1+1 & 2 & 37 \\ 9+3 & -1 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 9+29 & 6-u9 \\ 99-2 & 29 & 8+27 \\ -6-u9 & -8+29 & 0 \end{bmatrix}$$

$$A = \frac{1}{2}(A+A^0) = \begin{bmatrix} 7 & 1+1 & 3-29 \\ 7-1 & 9 & 4+1 \\ -3-29 & -u+1 & 0 \end{bmatrix}$$

$$A = \frac{1}{2}(A+A^0) + \frac{1}{2}(A-A^0)$$

$$A = \frac{1}{2}(A+A^0) + \frac{1}{2}(A+A^0) + \frac{1}{2}(A-A$$

Scanned with CamScanner

Solve
$$A = \begin{bmatrix} 1 & 2-3i & 4+5i \\ b+9 & 0 & 4-5i \\ -1 & 2-i & 2+i \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2+3i & 4+5i \\ 6-7 & 2+7i & 2-7i \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 6-7 & 7 \\ 2+3i & 0 & 2+7 \\ 4+5i & 2-7i \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 6-7 & 7 \\ 2+3i & 0 & 2+7 \\ 4+5i & 2-2i \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 6-7 & 7 \\ 2+3i & 0 & 2+7 \\ 4+5i & 2-2i \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2-3i & 4+5i \\ 6+1 & 2-3i & 4+5i \\ -1 & 2-i & 4+5i \end{bmatrix} + \begin{bmatrix} -9 & 6-9 & 9 \\ 2+3i & 0 & 2+7 \\ 2+3i & 0 & 2+7 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2-3i & 4+6i \\ 8+4i & 0 & 6-4i \\ 4-6i & 6+4i & 4i \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 2-1 & 4+4i \\ 4-2i & 0 & 3-2i \\ 2-3i & 3+2i \\ 2-3i$$

Scanned with CamScann

1. Reduce the Matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 0 & 0 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$

Form and hence find this $\begin{bmatrix} 2 & 4 & 3 & 2 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$

Form and hence $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$

Form and hence $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 \\ 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 10 & 12 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & -1 & -3 & 3 & -1 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 1 & 1 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & -5 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & -5 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & -5 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & -5 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & -5 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$

Reduce the Matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & -5 & 2 & -3 \\$

Scanned with CamScar

$\sim \int_{-1}^{-1} \frac{-3}{-2} \frac{3}{2} \frac{-1}{-1} R_3 \rightarrow 2R_3 - 11R_2$
$0 \rightarrow Ru + 2R_2$
$\sim \begin{bmatrix} -1 & -3 & 3 & -1 \\ 0 & -9 & 0 & -1 \end{bmatrix} R_2 \rightarrow R_2 - 2R_4$
$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad R_3 \rightarrow R_3 + 6R_4$
L 0 0 1 0 J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\sim \begin{bmatrix} -1 & -3 & 3 & 0 & 7 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{R_2} ; R_3 \longleftrightarrow R_H$
0 0 1 0
3 [0 -1 -3 -1] 4. [2: 1 3 5]
3 -2 -1 -3 -1 1 2 1 3
1 2 3 . Qu 7 13
$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$
L 1 1 7 7 3 14 4 NF 1 -2
5- [8 1 3 6] 6- 0 1 2 1 2 -1 1 0
$\begin{bmatrix} 0 & 3 & 2 & 1 & 1 & -1 & 2 & 0 \\ 1 & -1 & 2 & 0 & 1 & -1 & -1 & 1 \end{bmatrix}$
-8-1-3
-3 -17
Solul [-9 -1]
3
9 = 1 - 3 - 1
$\begin{bmatrix} 2 & 3 & -1 & R_{13} \rightarrow R_{13} - R_{13} \end{bmatrix}$
~ 1 -9 0 - 2 1 R3 -> R3 - R4
0 784 68 16 671 7 1- 8. 8- 6
$\sim \left[-28 - 19 - 3 \right] = \left[\frac{-3}{2} \right] $
2 3 -1 (Ku-) Ku
-2 0 -2 0
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanne

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 3 \\
0 & 2 & 0 & -1 \\
0 & 0 & 0 & -3
\end{bmatrix}
R_{2} \rightarrow 3R_{2} - R_{4}
R_{3} \rightarrow 7R_{3} - 3R_{4}
R_{4} \rightarrow 2R_{2}
R_{5} \rightarrow 2R_{5}
R_{5} \rightarrow$$

6.

$ \begin{bmatrix} 2 & 0 & -1 & +1 \\ 0 & -14 & -3 & +5 \\ 0 & 20 & 9 & +1 \\ 0 & 3 & 3 & +4 \end{bmatrix} $ $ \begin{bmatrix} 2 & 0 & -1 & +1 \\ 0 & -1 & -3 & +5 \\ 0 & 3 & 3 & +4 \end{bmatrix} $ $ \begin{bmatrix} 2 & 0 & -1 & +1 \\ 0 & -1 & -3 & +5 \\ 0 & 3 & 3 & +4 \end{bmatrix} $ $ \begin{bmatrix} 2 & 0 & -1 & +1 \\ 0 & 20 & 9 & +1 \\ 0 & 3 & 3 & +4 \end{bmatrix} $ $ \begin{bmatrix} 2 & 0 & -1 & +1 \\ 0 & 20 & 9 & +1 \\ 0 & 3 & 3 & +4 \end{bmatrix} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 0 & -22 & 3 & 1 \\ 0 & -11 & 1 & 4 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} C_2 \rightarrow \frac{C_2}{C_2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\sim \begin{bmatrix} 1 & 0 & 10 & 0 \\ 0 & 0 & 0 & -9 \end{bmatrix} \xrightarrow{R_2 + R_3} \xrightarrow{R_2 + R_3}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 11 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_2 & \neg & R_2 \\ -\overline{R} & -\overline{R} & -\overline{R} \end{bmatrix} $

8

$$R_{3} = 3R$$
 $R_{1} + R_{1}$
 $R_{1} + R_{2}$
 $R_{2} - R_{1}$
 $R_{2} - R_{1}$
 $R_{3} - R_{2}$
 $R_{3} - R_{1}$
 $R_{1} - R_{1} + R_{2}$
 $R_{3} - R_{3}$
 $R_{3} - R_{3}$
 $R_{3} - R_{3}$
 $R_{3} - R_{3}$
 $R_{4} - R_{2}$
 $R_{3} - R_{2}$
 $R_{4} - R_{2}$
 $R_{4} - R_{2}$
 $R_{4} - R_{2}$
 $R_{5} - R_{2}$
 $R_{4} - R_{2}$
 $R_{4} - R_{2}$
 $R_{5} - R_{2}$

3/12/2018 system of Linear semultaneous equations 1. Write the following equations in matrix form my Ax=B and Solve for x by finding A-1 where X+y-22=3; 2x-y+2=0; 3x+y-2=8 solul Girven Equations 2+y-22=3 2x-y+z=0 Ax=B=) x=A'Bwhen $A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{bmatrix}$ $x = \begin{bmatrix} x \\ y \\ 2 \end{bmatrix}$ $B = \begin{bmatrix} 3 \\ 0 \\ 8 \end{bmatrix}$ consider A = I3 A $\begin{vmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} A$ $\begin{vmatrix}
1 & 1 & -2 \\
0 & -3 & 5
\end{vmatrix}
R_{2} \rightarrow R_{2} - 2R_{1} = \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{vmatrix}
A.$ $\begin{bmatrix} 1 & 1 & -2 \\ 0 & -3 & 5 \\ 0 & 0 & 5 \end{bmatrix} R_3 \rightarrow 3R_3 - 2R_2 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -5 & -2 & 3 \end{bmatrix} A$ $\begin{bmatrix} 3 & 0 & -1 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to 3R_1 + R_2} = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 3 & -3 \\ -1 & -2/5 & 3/5 \end{bmatrix} \xrightarrow{A}$ $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -1 & 1 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -1 & 1 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -1 & 1 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -1 & 1 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -1 & 1 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -\frac{1}{6} & 315 \end{bmatrix} \xrightarrow{R_1 \to R_2 + R_3} = \begin{bmatrix} 0 & 315 & 315 \\ -1 & -$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \stackrel{R_1}{=} \begin{bmatrix} 0 & \frac{1}{5} & \frac{1}{15} \\ -1 & -1 & 1 \\ -1 & -\frac{1}{2} & \frac{1}{5} & \frac{1}{5} \end{bmatrix} \stackrel{A}{=}$$

$$I_3 = (A, =) \quad c = \begin{bmatrix} 0 & \frac{1}{5}, & \frac{1}{15} \\ -1 & -1 & 1 \\ -1 & -\frac{1}{5} & \frac{3}{15} \end{bmatrix}$$

$$A = A^{-1} = C$$

$$X = A^{-1}B$$

$$\begin{bmatrix} \chi \\ y \\ -1 \\ -1 \\ -2/5 \end{bmatrix} = \begin{bmatrix} 0 & 115'' & 115 \\ -1 & -1 & 1 \\ -1 & -2/5 \\ 3/5 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 8 \end{bmatrix}$$

$$= \begin{bmatrix} 0 + 0 + 8/5 \end{bmatrix}$$

$$= \begin{bmatrix} 0+0+8/5 \\ -3-0+8 \\ +3-0+24/5 \end{bmatrix}$$

$$\begin{bmatrix} z \\ y \\ z \end{bmatrix} = \begin{bmatrix} 815 \\ 5 \\ 915 \end{bmatrix}$$

pote

- 2. For Non-Homogeneous system
 - The system AX = B is consistent if and only if * Consistent rank of A = rank of AB and it has a solution
 - 1. The e(A) = e(AB) = n then the system has unique
 - where n= unknown voriables
 - 2. If e(A) = e(AB) < n then the system is consis tent but therese exsist insinite number of solutions.

- 3. If the clast class then the system is inconsistent and it has no solution.
- 1. Show that the equations x+y+ = +; 2x+5y-22.

 and x+7y-7z=5 are not consistent

 [only row operations]

$$2+y+2=4$$

 $2x+5y-2=3$
 $2+y-7=5$

can be expressed as Ax = B

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & -2 \\ 1 & 7 & -7 \end{bmatrix} ; B = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} ; x = \begin{bmatrix} 7 \\ 4 \\ 2 \end{bmatrix}$$

Consider Argumented motific

$$\begin{bmatrix} AB \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 9 & 5 & -9 & 3 \\ 1 & 7 & -7 & 5 \end{bmatrix}$$

$$e(A) = 2 ; e(AB) = 3$$

$$\therefore e(A) \neq e(AB)$$

Hence geven equation are inconsistent and it has no solution

2. Solve the Equations
$$74y+2=9$$
, $97+5y+72=52$.

and $92x+y-2=0$

Solve Given equations $x+y+2=9$
 $9x+5y+72=52$
 $9x+5y+72=52$
 $9x+y-2=0$

Given equations can be expressed as

$$A = \begin{bmatrix} 1 & 1 & 1 & 9 \\ 2 & 5 & 7 & 2 & 1 \\ 3 & 5 & 7 & 2 & 1 \end{bmatrix}; x = \begin{bmatrix} x & y & y & 1 \\ 2 & 5 & 7 & 2 & 1 \\ 3 & 5 & 7 & 2 & 2 \\ 9 & 1 & 1 & 0 & 2 \end{bmatrix}$$

Argumented matrix

$$(AB) = \begin{bmatrix} 1 & 1 & 1 & 9 \\ 9 & 5 & 7 & 52 \\ 9 & 1 & 1 & 0 & 2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 9 \\ 0 & 3 & 5 & 34 \\ 0 & -1 & -3 & -18 \end{bmatrix} R_2 \rightarrow R_2 - 2R_1$$

$$\begin{pmatrix} 0 & 1 & 1 & 9 \\ 0 & 3 & 5 & 34 \\ 0 & 0 & -4 & -20 \end{pmatrix} R_3 \rightarrow 3R_3 + R_2$$

$$e(A) = 3, e(AB) = 3, n = 3$$

$$e(A) = e(AB) = n$$

$$e(AB) = e(AB$$

3. Solve the System of Igneor equotions by motion method x + y + z = 6; 2x + 3y - 2z = 2; 5x + y + 2z = 13 solul Given equations

$$2+y+2=6$$

 $2x+3y-22=2$
 $5x+y+22=13$

Argum
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -2 \\ 5 & 1 & 2 \end{bmatrix}; X = \begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix}; B = \begin{bmatrix} 6 \\ 2 \\ 13 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -2 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} y \\ y \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 13 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -4 \\ 0 & -4 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} R_2 \rightarrow R_2 - 2R_1 = \begin{bmatrix} 6 \\ -10 \\ -17 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -4 \\ 0 & 0 & -19 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix} R_3 \rightarrow R_3 + 4R_3 = \begin{bmatrix} 6 \\ -10 \\ -57 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 17 \\ -17 \\ -57 \end{bmatrix}$$

$$y+y+z=6$$

 $y-uz=-10$
 $-19z=-57$
 $z=3$
 $y-1z=-10$
 $y=2$
 $z+2+3=6$

4. Examine the following equations are consistent or inconsistent

or inconsistent

1)
$$x - uy + 7z = 8$$
 $3x + 3y - 9z = 6$
 $7x - 8y + 96z = 31$
 $7x - 8y +$

Girven equations can be expressed as

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 3 \end{bmatrix}; X = \begin{bmatrix} 7 \\ y \\ 2 \end{bmatrix}; B = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

consider orgumented matrix en la

$$[AB] = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 3 & -1 & 2 & 1 \\ 2 & -2 & 3 & 2 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

$$[AB] = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 3 & -1 & 2 & 1 \\ 9 & -2 & 3 & 2 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

$$\approx \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & -1 & 1 & -1 \end{bmatrix} R_2 \rightarrow R_2 - 3R_1$$

$$= \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & -1 & 1 & -1 \end{bmatrix} R_2 \rightarrow R_3 \rightarrow R_3 - 2R_1$$

$$= \begin{bmatrix} 0 & -6 & 5 & -4 \\ 0 & -3 & 2 & -4 \end{bmatrix} R_2 \rightarrow R_3 \rightarrow R_3 - 2R_1$$

$$= \begin{bmatrix} 0 & -6 & 5 & -4 \\ 0 & -3 & 2 & -4 \end{bmatrix} R_2 \rightarrow R_4 - R_1$$

.: The given system is maconsistent and it has unpaucsolution

$$x + 2y - 2 = 3$$
 $- 3y + 52 = -8$
 $- 2 = -9$
 $52 = 20$

For what values of
$$\lambda$$
 the equations λ the equation and λ the equation and λ the equation and λ the equation and λ the equation λ the equation λ the equation λ the equation and λ the equation λ the equation

But given that the system has a solution of must be consistent so that

$$\lambda^{2}-3\lambda+9=0$$

$$(\lambda-2)(\lambda-1)=0$$

$$\lambda=1,2$$

Cose (7)

$$[AB] = \begin{bmatrix} 1 & 1 & 1 & q \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Given equation are consistent and will have no-of solutrons.

$$y = -3k$$

$$\begin{bmatrix} \chi \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+2k \\ -3k \\ k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} + K \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

Scanned with CamScann

$$A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$

$$P = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$Argumented matrox$$

$$Argumented matrox$$

$$Argumented matrox
$$Argumented matrox$$

$$Arg$$$$$$$$$$$$$$

$$\frac{1}{1-2} = \begin{bmatrix} \sqrt{1} & 1 & -2 & c \\ 1 & -2 & 1 & b \\ -2 & 1 & 1 & a \end{bmatrix}$$
 | Instance of the form

Given system are inconsistent and will have no solution. solutron.

$$\ell(A) = 2$$
; $\ell(AB) = 2$; $n = 3$

Given equations are consistent and will have infinite 17003/ 174y - 2 = cl 28 1700 bd 000 0 moley8 -3y +3z = b-c no of solutions

$$7+y-2=c$$

Scanned with CamScanner

the given system of equations is consistent and has infinite no of solutions

$$2+y+2=6.$$

$$y+2=8;$$

$$1et 2=K$$

ire) Matrix method

$$3x - y - 2 = 2$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 9 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 9 & -1 & 3 & 1 \\ 3 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 9 \end{bmatrix}$$
, $X = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$

Given equations
$$x+y+9=4$$
 $9x-y+3=9$
 $3x-y-2=9$

These equations can be expressed as $Ax=B$
 $A=\begin{bmatrix} 1 & 1 & 2 \\ 9 & -1 & 3 \\ 3 & -1 & -1 \end{bmatrix}$; $B=\begin{bmatrix} 4 \\ 9 \\ 9 \end{bmatrix}$; $X=\begin{bmatrix} 2 \\ 4 \\ 9 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 2 \\ 9 & -1 & 3 \\ 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 2 \end{bmatrix}$$

. '. x= 1, y=-1 , 2=2 bd (DV) Consistent Method

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & -1 & 0 \\ 3 & 1 & -1 \end{bmatrix}; x = \begin{bmatrix} x \\ y \\ 2 \end{bmatrix}; B = \begin{bmatrix} 4 \\ 39 \end{bmatrix}; x = \begin{bmatrix} 1 & 1 & 1$$

Argumented: motron
$$[AB] = \begin{bmatrix} 1 & 2 & 4 \\ 9 & 5 & 3 & 9 \\ 3 & -1 & 2 & 4 \end{bmatrix}$$

$$\sim \begin{bmatrix} 0 & -3 & 1 & 1 & R_2 \rightarrow R_2 - 2R_1 \\ 0 & -4 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 - 3R_1 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 & 0 \\ 0 & -7 & -7 & 0 & R_3 \rightarrow R_3 & 0 \\ 0 & -7 & -7 & 0$$

The ?+

$$2x+y+122 = 4 - (30)$$
 $-3y-2=1$
 $-3y=3$
 $-3y=2=1$
 $-122=-34$
 $y=-1$

the given system of Guestinos is consistent .: x = 1; y = -1; 7 = 2

ii) Griven Equations

the given system of equations can be expressed Matrix method

as
$$AX = B$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 82 - 7 \\ 12 - R_{1} \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 12 \end{bmatrix} \begin{bmatrix} 7 \\ 12 \end{bmatrix} \begin{bmatrix} 82 - 7 \\ 12 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 12 \end{bmatrix} \begin{bmatrix} 9 \\$$

$$\begin{cases} x + y + u = 6, \\ y - 6 = 0, \\ -3 = 0, \\ 2 = 0 \end{cases}$$

Consistent method

Argumented motrez,

$$C(A) = c(AB) = 0$$

The given system of equations is consistent and has unique solution

Date 4. Find the values of a for which the system of equations 3x-y+u==3; x+2y-3==-2; Gat 5y+2=-3 will have infinite no of solutions solve them with the x values

system of can be expressed in a matrix form

where
$$A = \begin{bmatrix} 3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & \lambda \end{bmatrix}$$
; $X = \begin{bmatrix} 2 \\ 7 \\ 2 \end{bmatrix}$; $B = \begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix}$

5. Find whether the following set of equations are consistent
$$x_1+x_2+x_3+x_4=0$$
 $x_1+x_2+x_3-x_4=4$ $x_1+x_2-x_3+x_4=-4$ $x_1-x_2-x_3+x_4=-4$

Solul Green equations

$$x_1 + x_2 + x_3 + x_4 = 0$$

 $x_1 + x_2 + x_3 - x_4 = 4$
 $x_1 + x_2 + x_3 + x_4 = 4$
 $x_1 - x_2 + x_3 + x_4 = 2$
 $x_1 - x_2 + x_3 + x_4 = 2$
 $x_1 - x_2 + x_3 + x_4 = 2$

set 0 can be expressend in a matrix form

Argumented matrix

$$\begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & -2 & 4 \\
0 & 0 & -2 & 0 & -4 \\
0 & -2 & 0 & 0 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
R_2 - & R_2 - R_1 \\
R_3 - & R_3 - R_1 \\
R_4 - & R_4 - R_1
\end{bmatrix}$$

$$\ell(A) = \ell(AB) = r = n$$

Girven equations are consistent and will have

Consistency of system of Homogeneous linear 1. Consider a system of M-homogeneous linear equations in n- unknownsanyitaiz 22+ 91323+- + + anzn =0 7 9. Anzin +azzxz+azzxz+ - +aznan=0 4. amizitamzzzt -- - +amn.xn=0 system one can be return as en a matrix form S. of e(A) = n then the system of equations have only trivial solution i.e., zero solution * If e(A) = n. then the system of equations have an infinite no of non-trivial solutions, in this case n-& Imearly independent solution In Solve 2+y-22+3w=0:x-2y+2-w=0;4x+y-5t 30 lve 2+y-22+300=0; Greven equation +800=0; 5x-7y+22-0=0; Greven equation solul Given equation nortula. supraci sveil bio $x-2y+2+\omega=0$ $4x+y-52+8\omega=0$ $5x-7y+22-\omega=0$ 2+y-22+3W=0 system 1) can be expressed in the form of a matrix $A = \begin{bmatrix} 1 & 1 & -2 & 3 \\ 1 & -2 & 1 & -1 \\ 4 & 1 & -5 & 8 \\ 5 & -7 & 2 & -1 \end{bmatrix}; x = \begin{bmatrix} x \\ y \\ \frac{2}{2} \\ \omega \end{bmatrix}; 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Scanned with CamScanner

2. Golve
$$x_{1}y_{-3}z_{+} + 2w = 0$$
, $2x - y + 2z_{-2}w = 0$
 $2x - 2y + z_{-1}w = 0$, $-ux_{1} + y_{-3}z_{+} + w = 0$
 $2x_{1}y_{-3}z_{+} + 2w = 0$
 $2x_{2}y_{+}z_{-4}w_{-6}$
 $-ux_{1}y_{-3}z_{+} + w = 0$
 $3x_{2}y_{+}z_{-4}w_{-6}$
 $-ux_{1}y_{-3}z_{+} + w = 0$

Given system of equations (1) can be expressed as $Ax = 0$

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & -1 & 2 & -3 \\ 3 & -2 & 1 & -4 \\ -u & 1 & -3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & -5 & 10 & 10 \\ 0 & 5 & -15 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -10 & 5 \\ 0 & 0 & -6 & -8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -10 & 5 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -10 & 5 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -10 & 5 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -10 & 5 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -3 & 2 \\ 0 & -3 & 8 & -7 \\ 0 & 0 & -21 \end{bmatrix}$$

Scanned with CamScanne

C- (n. 718] 1 (1-8)

solve the system of equations x+2y+(2+k)=0 2x+(2+1c)y+4=0, 7x+13y+(18+k)==0 for all volume 4. Bate Given Equations 8/12/18 of K (Solu1 2+24+(2+K) = 0 7 2x+(2+K)y+4=0. ->0 77+134+(18+K) Z=0 system o can be expressed as a motrer form of Ax=13 where $A = \begin{bmatrix} 1 & 2 & 2+k \\ 2 & 2+k & 4 \\ 7 & 13 & 18+k \end{bmatrix} ; x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} . B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ The given system has a solution for all values of k if the system has a non-third solution i.e., C(A) <n ; n=3 C(A) < 3Given matrix A is 3x3 matrix so that 1A1 = 0 1A1 = 0 2 2+k 4 = 0 - 13 18+k 1 [(8+K)(2+K)-52] -2 [2[18+K)-218] +(2+1)=0 36+18K+2K+K2-52-2(36+216-28)+(2+K)(26-14 -7K)=0 K2+20K-16-16-41C+24-14K+121C-71c2=0 -61d2 +141< -8=0 = 1 U - (n) 12 $3k^{2}-7k+u=0$ $3k^{2}-3k-uk+u=0$ 3k(k-1)-u(k-1)=0(K-1) (3K-4)=0

COSC(1)

At
$$k = 1$$
 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 7 & 13 & 19 \end{bmatrix}$

When k=1 the system has a non-treveal soluteon

here
$$K = 1$$
 ...

 $1 - Y = 3 - 2 = 1 \cdot 1 \cdot 1 \cdot 5$
 $1 + 2 = 0$
 $1 + 2 = K$

Let
$$z = K$$

$$y = -2K$$

$$y = -2k$$

$$\begin{bmatrix} 2 \\ y \\ z \end{bmatrix} = \begin{bmatrix} K \\ -2K \\ k \end{bmatrix} = K \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

cose (ii)

A =
$$\begin{bmatrix} \lambda & 1 \\ 1 & \lambda & 1 \\ 1 & 1 \end{bmatrix}$$
 $ix = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Given that given system has a non-trivial golution

 $C(A) < 0$, $in = 3$
 $C(A) < 3$
 $C(A) <$

$$\begin{array}{c} (A) = 1, n = 3 \\ (A) \leq 0 \\ N + y + 2 = 0 \\ Y = K_1; \quad 2 = K_2 \\ Y + K_1 + K_2 = 0 \\ Y = 1 + (2K_1 + K_2) \\ Y = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_3 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_4 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_5 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_6 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_7 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_8 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_2 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_1 = \begin{bmatrix} -2K_1 + K_2 \\ K_1 \end{bmatrix} \\ K_2 = \begin{bmatrix} -2K_1$$

$$-9x + k + k = 0$$

$$-xx = -xx$$

$$x = k$$

$$\begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} x \\ k \\ z \end{cases} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
That the only sneal number of the

6 show that the only neal number & for which the system 212y+32 = 22; 32+y+32 = 2y; 32+3y+2=22 has non- zero solution is 6 and solve them when

solul Given system con be expressed as Ax = 0 where

n system con be
$$A = \begin{bmatrix} 1-\lambda & 2 & 3 \\ 3 & 1-\lambda & 2 \\ 2 & 3 & 1-\lambda \end{bmatrix}$$
; $x = \begin{bmatrix} 2 \\ y \\ 2 \end{bmatrix}$ and $0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Here number of vortables n=3 The given system of equations possess a non-zero

solution, of A < n solution of

For this
$$|A| = 0$$

$$\begin{cases} |-\lambda| & 2 & 3 \\ 3 & |-\lambda| & 2 \\ 2 & 3 & |-\lambda| \end{cases} = 0$$

Applying
$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$\begin{vmatrix} 6-\lambda & 6-\lambda & 6-\lambda \\ 3 & 1-\lambda & 2 \\ 2 & 3 & 1-\lambda \end{vmatrix} = 0$$

$$(6-\lambda) \begin{vmatrix} 1 & 1 & 2 \\ 3 & 3 & 1-\lambda \end{vmatrix} = 0$$

$$(6-\lambda) \begin{vmatrix} 1 & 0 & 0 \\ 3 & -(\lambda+2) & -1 \end{vmatrix} = 0$$

$$(6-\lambda) \begin{vmatrix} 1 & ((\lambda+2)(\lambda+1)+1) \\ 2 & (-(\lambda+1)) \end{vmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ ((\lambda+2)(\lambda+1)+1 \end{vmatrix} - 0 + 0 \end{bmatrix} = 0 \Rightarrow (6-\lambda)[\lambda^{2} + 3\lambda + 3]$$

$$(6-\lambda) \begin{bmatrix} 4\lambda + 3 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$(6-\lambda) \begin{bmatrix} 1 \\ 4\lambda + 3 \end{bmatrix} = 0$$

$$($$

Gauss - Bolutions of Linear systems Direct Methods 1) Groussian Elimination fuethod This method of solveng system of n tenear Equations in in unknowns consists of eliminating the Co-efficients in such a way that the system reduces to upper treangular system which may be solved by knowned and solved by knowned by knowned and solved by knowned by knowned and solved by knowned by solved by bockward substitution. 1. Solve the Equations, 22+y+ = 10;3x+y+32 = 18;7+uy+92. =16; by using Grouss elimination method. solul Girven Equations CATUM FOUNTIONS 27ty+2 =10 37+2y+3=18 +000 system () can be expressed in the form Ax=B

where where $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 9 \end{bmatrix}$, $x = \begin{bmatrix} 2 \\ y \\ 2 \end{bmatrix}$ $B = \begin{bmatrix} 10 \\ 18 \\ 16 \end{bmatrix}$ Argumented matrix Attent Islamupa $[AB] = \begin{bmatrix} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{bmatrix}^{2}$ $\sim \begin{bmatrix} 2 & 1 & 1 & 10 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & -4 & -20 \end{bmatrix} R_3 \rightarrow R_3 - 7R_2$

which is a upper triangular matrix

$$2x+y+2=10$$
; $y+3=2=6$
 $-4z=-20$
 $z=5$
 $y+3(5)=6$; $2z-9+5=10$
 $y=6-15$; $2x=14$
 $y=-9$; $z=7$;

x=7 /y=-9; ==5

2. Solve 37+y-2=3; 97-8y+2=-5; 72-2y+92=8 by Gaussian elimination method

Girven Equations

$$3x+y-2=3$$

 $2x-8y+2=-5$ D
 $x-2y+92=8$ The form $Ax=B$
system D can be expressed in the form $Ax=B$

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -8 & 1 \\ 1 & -2 & 9 \end{bmatrix} \quad ; X = \begin{bmatrix} x \\ y \\ 2 \end{bmatrix} \quad ; B = \begin{bmatrix} 3 \\ -5 \\ 8 \end{bmatrix}$$

Argumented matrix

Trigumented matrix
$$[AB] = \begin{bmatrix} 3 & 1 & -1 & 3 \\ 2 & -8 & 1 & -5 \\ 1 & -2 & 9 & 8 \end{bmatrix}$$

$$N \begin{bmatrix} 3 & 1 & -1 & 3 \\ 1 & -1 & 3 \end{bmatrix}$$

solve the equations 2+y+2=6; 3x+3y+v== 20; (2x+y+32 = 13; using partial prvoting Gousson elemenotion fuethod.

solu) Girven Equations

System D can be expressed in the form

$$Ax = B$$
 where

 $Ax = B$ where

 $Ax = B$ where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix} ; X = \begin{bmatrix} 2 & 7 \\ 4 & 2 \end{bmatrix} ; B = \begin{bmatrix} 6 \\ 20 \\ 13 \end{bmatrix}.$$

$$[AB] = \begin{bmatrix} 1 & 1 & 0 & 1 & 6 \\ 3 & 3 & 4 & 20 \\ 2 & 1 & -3 & 13 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 4 \\
0 & -7 & -3 & -11 \\
0 & 0 & 8 & -8
\end{bmatrix}$$

$$\begin{array}{c}
P_3 \rightarrow 7R_3 - 5P_9 \\
R_3 \rightarrow 7R_3 - 5P_9
\end{array}$$
which is on upper triangular motive.

$$7 + 9(2) - 1 = 4$$
; $9 + 9y + 2 = 4$
 $7 + 9(2) - 1 = 4$; $9 + 9y + 2 = -11$; $-7y - 3(-1) = -11$
 $7 = 1$; $9 = -12$;

Solve the Equations 107tyt=12; 97 Hoy+==13 and ity+5= = 7 by Grows - Jordon Method Solu Girven Equations

$$102+y+2=12$$

 $92+10y+2=13$
 $2+y+52=7$

system 1 can be expressed in the form

$$Ax = B$$

$$A = \begin{bmatrix} 10 & 1 & 1 \\ 2 & 10 & 1 \\ 1 & 5 & 5 \end{bmatrix}; x = \begin{bmatrix} 12 \\ 13 \\ 7 \end{bmatrix};$$

$$Argumented matrix = \begin{bmatrix} 12 \\ 12 \\ 13 \end{bmatrix}$$

$$\begin{bmatrix} AB \end{bmatrix} = \begin{bmatrix} 10 & 1 & 1 & 12 \\ 2 & 10 & 1 & 13 \\ 1 & 1 & 5 & 7 \end{bmatrix}$$

$$\begin{bmatrix} AB \end{bmatrix} = \begin{bmatrix} 10 & 1 & 1 & 12 \\ 2 & 10 & 1 & 13 \\ 1 & 1 & 5 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 10 & 1 & 1 & 12 \\ 2 & 10 & 1 & 12 \\ 1 & 1 & 5 & 7 \end{bmatrix}$$

$$[AB] = \begin{bmatrix} 10 & 1 & 1 & 12 \\ 2 & 10 & 1 & 13 \\ 1 & 1 & 5 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 5 & 10 & 1 & 1 & 12 \\ 0 & 49 & 4 & 53 \\ 0 & 9 & 49 & 58 \end{bmatrix} \xrightarrow{R_2 \rightarrow 5R_2 - R_1} F_3 \rightarrow 10R_3 - R_1$$

$$\begin{bmatrix} 20 & 1 & 1 & 12 \\ 0 & 49 & 4 & 53 \\ 0 & 9 & 49 & 58 \end{bmatrix} \xrightarrow{R_2 \to 5R_2 - R_1} \xrightarrow{R_3 \to 10R_3 - R_1} \begin{bmatrix} 10 & 1 & 1 & 1 \\ 0 & 49 & 4 & 68 \\ 0 & 0 & 2365 & 2365 \end{bmatrix} \xrightarrow{R_2 \to 7} \xrightarrow{R_3 \to 10R_3 - 9R_2} \begin{bmatrix} 10 & 1 & 1 & 1 \\ 0 & 49 & 4 & 68 \\ 0 & 0 & 2365 & 2365 \end{bmatrix} \xrightarrow{R_2 \to 7} \xrightarrow{R_3 \to 10R_3 - 9R_2} \xrightarrow{R_3 \to 10R_3 - 9R_3} \xrightarrow{R_3 \to 10R_3} \xrightarrow{$$

7. Solve the Equations si

102, +22 +23= 12; x1+10x2-23=10 and x1-222+10x3 = 9 by Grays - Jordan method

Dote 15/12/18 2. Ergen Values Ergen Vectors

Let A = [a;j]mxn matrex a non-zero vector x is Said to be characteristics vector of A if there exsist a scalar λ such that $Ax = \lambda x \cdot f Ax = \lambda x$, (X +0) we say that X is Eigen vector or characteristic Vector of A corresponding to the Eggen voluces or characteristic vectors or values ala)

Note: A- 29 95 called characteristic matrix of A.olso determinant A-XI is a polynomial in a are degree in * 1A-XI = 0 is called the characteristic equation of

A. This will be polynomial Equation in a of degree n'. Here 'A' is nxn matriz (square matriz) 先至

75 the nxn unit motric i.e. should be sotisfied 1. Find the Eigen values and Eigen vectors of the

following matrix and els - estimates

oly Girven matrix

$$A - \lambda I = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Scanned with Carried Carried Control of the Carried Car

n'

The characteristic matrix of A is

the characteristic matrix
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$
The characteristic matrix of A is
$$A - \lambda I = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2 \end{bmatrix} - \lambda \begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
The characteristic equation of A is
$$|A - \lambda I| = 0$$

more (IT)

A = 1, 2, -2 ore the Eigen roots of A

More (IT)

A = 1 then
$$(A - \lambda I) \times = 0$$

$$\begin{bmatrix}
0 & 2 & -1 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{bmatrix}
\begin{bmatrix}
2 \\
2
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
0 & 2 \\
0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
2 \\
2
\end{bmatrix}
\begin{bmatrix}
2 \\$$

$$-7+2y-2=0$$

$$27-0$$

$$27-0$$

$$-k+2y-0=0$$

$$2y=k$$

$$y=\frac{k}{2}$$

$$y=\frac{k}{2}$$

$$x=\frac{1}{2}$$

$$x=\frac{1}{2}$$

$$x=\frac{1}{2}$$

$$x=\frac{1}{2}$$

$$x=\frac{1}{2}$$

Cose-III $-1f\lambda = -2$ then $(A-\lambda I)X = 0$ $= \begin{bmatrix} 3 & 2 & -1 \\ 0 & 4 + 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

CLA)=2;n=3 3x+2y-2=0

$$1-r=3-2$$
 $2y+2=0$

$$2y = +k$$

$$y = -\frac{1c}{2}$$

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} \frac{2}{3}k \\ -\frac{1}{2}k \end{array}\right] = \left[\begin{array}{c} \frac{2}{3}k \\ -\frac{1}{2}k \end{array}\right] = \left[\begin{array}{c} -\frac{1}{2}k \\ -\frac{1}{2}k \end{array}\right]$$

Given matrix

$$\begin{bmatrix} A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \end{bmatrix} \\ \begin{bmatrix} -1 & -2 & -01 \end{bmatrix} \end{bmatrix}$$

characterestics The

matrex

COSE I

$$4f \lambda = -3$$
 $(A - \lambda I) \dot{X} = 0$
 $-\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} y \\ y \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\sim \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y \\ y \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2$

Ante ple 2018 Properties of Eigen Values:

- 1. The sum of the Ergen values of a square motrex 95 equal to its trace and product of the Eigen values es equals to ets determenant
- 2. of 12's an Ergen value of A corresponding to the Ergen vector x" then x" is Ergen volue of -An corresponding to the Ergen vector "x"

3. A square matrex " A" and its transpose AT. have

4. If Aond B are nxn matrex and if A is invertible the some Eggen volues. then A-1B and BA-1 have some Eggen values.

5. If $\lambda_1, \lambda_2, --\cdot \lambda_n$ are the Eigen values of matrix A

6. If ka = ka -- , kan are the Eigen volues of

7. 18 "x" is the Eggen value of the motion A then

Atk is an Eigen value of the motion AtkI

8. If "x" is on Eggen volue of a non-singular motrex of A corresponding to the Eggen vector"x" then 2-1 is on eigen value of A-1 and the co-oco bonding Eigen values itself.

2. Find the characteristic roots & characteristic vulton HW

of the following matrices.

-solul sto Greven matrers and or more and to mue in

$$A = \begin{bmatrix} 1 & -6 & -47 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$

of part characteristic matrix of $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$

slow of the characteristic Equation of A 950 A miles of
$$A = \lambda I$$
 and $A = \lambda I$ and

and a virtual
$$\begin{vmatrix} 1-\lambda & -6 & -4 \\ 0 & 4-\lambda & 2 \\ 0 & -6 & -13+\lambda \end{vmatrix} = 0$$
 And written

$$(J-\lambda) [u-\lambda | 3+\lambda) + 12] + 6(0) - u(0) = 0$$

$$(J-\lambda) [-(12-3\lambda+u\lambda-\lambda^2)+12] = 0$$

$$(J-\lambda) [\lambda^2-\lambda] - 12\lambda^2 + 12] = 0$$

$$(\lambda^2-\lambda)(J-\lambda) = 0$$

$$\lambda^2-\lambda^3+\lambda^2=0$$

$$\lambda^3-2\lambda^3+\lambda=0$$

$$\lambda = 1, 1, 6 \text{ ore } \text{ the } \text{ figen } \text{ value of } A$$

$$\lambda = 1, 1, 6 \text{ ore } \text{ the } \text{ figen } \text{ value of } A$$

$$\int_{-1}^{2} \int_{-1}^{2} \int_{$$

$$(10) = 1; n = 3$$

$$0 = 7 = 3 - 1 = 0, 1 = 5$$

$$-6y - u2 = 6; y = K_1, z = K_2$$

$$-6y - uK_2 = 0$$

$$-ky = yK_2$$

$$y = -\frac{2}{3}K_2$$

$$y = -\frac{2}{$$

The choracteristic mothers of
$$A$$
 is

$$A-\lambda I = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
the choracteristic mothers of A is

$$A-\lambda I = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3-\lambda & -1 & 1 \\ -1 & 5-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{bmatrix}$$
the choracteristic equation of A is

$$|A-\lambda I| = 0$$

$$|3-\lambda I|$$

Cose (?)

If
$$\lambda = 2$$
, then $(A - \lambda I) \times = 0$

$$\begin{bmatrix}
1 & -1 & 1 \\
-1 & 3 & -1 \end{bmatrix}
\begin{bmatrix}
2 \\
2
\end{bmatrix} = \begin{bmatrix}0 \\
0\end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
2 \\
3
\end{bmatrix}
\begin{bmatrix}
2 \\
2
\end{bmatrix}
\begin{bmatrix}
2 \\
2$$

CO

The characteristic motivit of
$$\theta$$
 ?5

 $A - \lambda I = \begin{bmatrix} 6 - \lambda & -9 & 2 \\ -9 & 3 - \lambda & -1 \\ 3 & -1 & 3 - \lambda \end{bmatrix}$

The characteristic equation of θ ?5

 $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$
 $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$
 $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic motivity of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic cquateon of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic cquateon of $A - \lambda I = 0$
 $A - \lambda I = 0$

The characteristic cquateon of $A - \lambda I = 0$
 $A - \lambda I = 0$

$$-x - y + 2 = 0$$

$$-3y - 32 = 0$$

$$-3y - 3k = 0$$

$$-3y - 3k = 0$$

$$-3y = 3k$$

$$y = -k$$

$$y = -k$$

$$\vdots$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} k \\ -k \end{bmatrix} = k \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

2. Given matrex

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

The characteristic matrix of A-1's

$$A - \lambda I = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 - \lambda & -6 & 2 \\ -6 & 7 - \lambda & -4 \\ 2 & -4 & 3 - \lambda \end{bmatrix}$$

The characteristic equation of A is

$$\lambda^{3} = 18\lambda^{2} + 1468\lambda + 148 = 0$$

$$\lambda(\lambda^{2} = 18\lambda + 145) = 0$$

$$\lambda = 0 ; (\lambda^{2} = 15\lambda - 3\lambda + 145) = 0$$

$$[\lambda(\lambda = 15) - 3(\lambda + 15)] \lambda = 0$$

$$\lambda(\lambda = 3)(\lambda - 15) = 0$$

$$\lambda = 0, 3, 15 = 0$$

$$\lambda = 0, 3, 15 \text{ ore the Eigen values}$$

$$005e(1)$$
If $\lambda = 0$ then $(A - \lambda I) = 0$

$$\begin{cases} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{cases} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 8 & -6 & 2 \\ 20 & -20 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 20 \end{bmatrix} \begin{cases} 2 \\ 2 \\ 20 \end{bmatrix} \begin{cases} 2 \\ 2 \\ 20 \end{cases} \Rightarrow 8R_{2} + 6R_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{cases}$$

$$\begin{cases} 8 & -6 & 2 \\ 2 \\ 0 & 20 \end{cases} \begin{bmatrix} 2 \\ 2 \\ 2 \\ 0 \end{cases} \Rightarrow 8R_{3} + 2R_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 8 & -6 & 2 \\ 2 \\ 0 & 20 \end{cases} \begin{bmatrix} 2 \\ 2 \\ 2 \\ 0 \end{cases} \Rightarrow 8R_{3} + 2R_{2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 8(A) = 2; \quad n = 3 \\ 0 - r = 3 - 2 = 1; \quad l = 15 \\ 8x - 6y + 2z = 0 \\ 20y - 20z = 0 \end{cases}$$

$$\begin{cases} 8x - 6k + 2k = 0 \\ 8x - 4k + 2k = 0 \end{cases} \Rightarrow 8x - 4k = 0; \quad x = 4k$$

1-0

Cosclir)

If
$$\lambda = 3$$
 then $(A - \lambda I) \times = 0$

$$\begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 5 & -6 & 2 \\ 0 & -8 & -4 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 7$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
3 & 4 & 2 \\
-1 & 2 & 6
\end{bmatrix}
\begin{bmatrix}
y \\
y \\
R_2 \rightarrow \frac{-2}{-2} = \begin{bmatrix} 0 \\
0 \\
0 \end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & 10 & 20 \\
0 & 30 & 30
\end{bmatrix}
\begin{bmatrix}
y \\
y \\
R_3 \rightarrow R_3 \rightarrow R_1 = \begin{bmatrix} 0 \\
0 \end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & 1 & 2 \\
0 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
R_2 \rightarrow R_3 \mid R_1 = \begin{bmatrix} 0 \\
0 \end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & 1 & 2 \\
0 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
R_3 \rightarrow R_3 \mid R_3 \rightarrow R_3 \mid R_1
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
2 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
2 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{bmatrix}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
2 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
0 & R_3 \rightarrow R_3 \mid R_2
\end{aligned}$$

$$\begin{bmatrix}
-7 & -6 & 2 \\
2 & R_3 \rightarrow R_3 \mid R_3 \mid$$

$$(1-\lambda) = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[(1-\lambda)(1-\lambda) - 1 \right] = 1 \left[(1-\lambda) + 1 \right] + 1 \left[(1-\lambda) + 1 \right] = 0$$

$$(1-\lambda) \left[$$

Case (9)

If
$$\lambda = 0$$
 then $(A - \lambda I) X = 0$

Cayley-Hamilton theorem and quadratic forms:-

the CALEY - HAMILTON THEOREMONE of schoroderestre

Every square matrix softsfres its characterestre

equation

The A = \begin{align*}
2 & 1 & 2 \\
5 & 3 & 3 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2 \\
-1 & 0 & -2

The characteristic equation motion of A $\begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix} - \begin{bmatrix} 2 & 70 & 01 \\ 0 & 2 & 0 \\ -0 & 0 & 2 \end{bmatrix}$ A-AI $= \begin{bmatrix} 2-\lambda & 1 & 2 \\ 5 & 3-\lambda & 3 \\ -1 & 0 & -2-\lambda \end{bmatrix}$ the characteristic equotion of $\begin{bmatrix} 2-\lambda & 1 & 2 \\ 5 & 3-\lambda & 3 & a \\ -1 & 0 & -2-\lambda \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (2-x)[(3-x)(-2-x)-0]-1[5(-2-x)+3]+2[0+il3-x)]=0 (2-1)[-6-3x+2x+2x+2)-(-10-5x+3)+6-2x=0 (2-1)(-6-32+22+22)-6-10-52+13)+6-22=0 (2-1) [121-6]+5x+7+6-2x=0 タスマータカー1ター入3+入2+6か+3以十13=D = $\lambda^3 + 3\lambda^2 + 7\lambda + 1 = 0$; - $\lambda^3 - 3\lambda^2 - 7\lambda - 1 = 0$ By Calley Hamelton theorem A3-3A2-7A-I = Jollow monte provi [4+3-2 2+3+0 4+3-4]
[0+15-3 5+9+0 10+9-6]
[-2+0+2 5-140-0 -2+0+4]
[-2+0+2 5-140-0 -2+0+4] 7 5 3 7 2 22 14 13

$$A^{3} = A^{2} A^{2} = \begin{bmatrix} 7 & 5 & 13 \\ 22 & 14 & 18 \\ 0 & -1 & 9 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$$

$$A^{1} = \begin{bmatrix} 14 + 25 - 3 \\ 44 + 70 - 13 \\ 0 - 5 - 2 \end{bmatrix} \begin{bmatrix} 14 + 16 - 6 \\ 22 + 42 + 0 \end{bmatrix} \begin{bmatrix} 14 + 16 - 6 \\ 25 & 104 \\ 0 - 3 + 0 \end{bmatrix}$$

$$A^{3} = 3A^{2} - 7A - I = \begin{bmatrix} 36 & 22 & 23 \\ 101 & 64 & 60 \\ -7 & -3 & -17 \end{bmatrix} \begin{bmatrix} 21 \times 15 & 97 \\ 64 & 42 & 23 \\ -7 & 0 & -14 \end{bmatrix}$$

$$A^{3} = 3A^{2} - 7A - I = \begin{bmatrix} 36 & 22 & 23 \\ 101 & 64 & 60 \\ -7 & -3 & -17 \end{bmatrix} \begin{bmatrix} 21 \times 15 & 97 \\ 64 & 42 & 39 \\ -7 & 0 & -14 \end{bmatrix}$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} = 3A^{2} - 7A - I = 0$$

$$A^{3} =$$

Scanned with CamScanner

Find the inverse of the following motives by using
$$C-H-T$$
 and also verify $C+H-T$

by using $C-H-T$ and also verify $C+H-T$

$$\begin{bmatrix}
1 & 2 & 3 \\
2 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
2 & -1 & 2 \\
3 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
3 & 1 & 1 \\
-1 & 5 & -1
\end{bmatrix}
\begin{bmatrix}
4 & 2 & -2 \\
-6 & 2 & -1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
6 & 2 & -1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
3 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
3 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
3 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
3 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
3 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
3 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -2 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
4 & -3 & -3 & -3 & -3 \\
2 & 1 & -3 & -3 & -3
\end{bmatrix}$$

The choroeteristic equation of A is
$$\begin{bmatrix}
A-\lambda I \end{bmatrix} = 0$$

$$\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & -1 & 0 \\
2 & 1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1-\lambda & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}$$

18-47 47 47 H=0

canned with CamScanne

$$A^{-1} = -A^{2} + uA - uI$$

$$(3-\lambda) \left[+1 + \lambda + \lambda + \lambda^{2} - \mathbf{U} \right] - 2 \left(6 + \epsilon \lambda - 12 \right) - 2 \left(-12 + 6 + \epsilon \lambda \right)$$

$$(3-\lambda) \left[\lambda^{2} + 2\lambda - 3 \right] - 2 \left(6\lambda - 6 \right) - 2 \left(6\lambda - 6 \right) = 0$$

$$(3-\lambda) \left[\lambda^{2} + 2\lambda - 3 \right] - 2 \left(6\lambda - 6 \right) - 2 \left(6\lambda - 6 \right) = 0$$

$$(3-\lambda)^{2} + 12\lambda - 2 \left(-\lambda^{3} - 2\lambda^{2} + 3\lambda - 2\lambda + 3 \right) = 0$$

$$\lambda^{2} + 5\lambda^{2} + 3\lambda + 3 = 0$$

$$\lambda^{2} + 5\lambda^{2} + 3\lambda - 3 = 0$$
By calcy Hamilton theorem
$$A^{3} = 6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda^{2} + 3\lambda - 3I = 0$$

$$A^{3} = -6\lambda^{2} + 3\lambda^{2} + 3\lambda$$

$$A^{3} = 5A^{2} + 7A = 3I = 0$$

$$= \begin{bmatrix} 79 & 96 & -26 \\ -78 & -95 & 96 \\ 78 & 26 & -25 \end{bmatrix} = \begin{bmatrix} 125 & 40 & -40 \\ -120 & -135 & 40 \end{bmatrix} + \begin{bmatrix} 14 & -14 \\ -12 & -7 & 14 \\ 120 & 40 & -35 \end{bmatrix} + \begin{bmatrix} 14 & -14 \\ -12 & -7 & 14 \\ 121 & -7 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 26 + 40 - 14 - 0 \\ -78 + 120 - 42 - 0 \\ -25 + 35 - 7 + 3 \end{bmatrix} = \begin{bmatrix} 26 - 40 + 14 + 0 \\ -25 + 35 - 7 + 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 3 - 5A^2 + 7A - 3I = 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 35 & 10 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 35 & 10 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 35 & 10 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 1 & 0 & -10 \\ 0 & 0 & 0 \\ 0 &$$

The characteristic matrix of A ?5

$$A - \lambda I = \begin{bmatrix} 3 & 1 & 1 \\ 1 & -1 & 5 \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & \lambda \\ 0 & 0 & \lambda \end{bmatrix}$$

$$= \begin{bmatrix} 3 - \lambda & 1 & 1 \\ -1 & 5 - \lambda & -1 \\ 1 & -1 & 5 - \lambda \end{bmatrix}$$
The characteristic equation of A 75

$$A - \lambda I = 0$$

$$A - \lambda$$

$$A^{3} = A^{9}A = \begin{bmatrix} 9 & 7 & 7 \\ -9 & 95 & -11 \\ 9 & -9 & 27 \end{bmatrix}$$

$$= \begin{bmatrix} 27 - 7 + 7 & 9 + 35 - 7 & 9 - 7 + 35 \\ -27 - 25 - 11 & -9 + 125 + 11 & -9 - 25 - 55 \\ 27 + 9 + 27 & 1 - 45 - 27 & 9 + 9 + 135 \end{bmatrix}$$

$$= \begin{bmatrix} 27 & 37 & 37 \\ -63 & 127 & -89 \\ 63 & -63 & 153 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 13A^{2} + 5uA - 79I \\ -63 & 127 & -89 \\ -63 & -63 & 153 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 117 & 91 & 91 \\ -117 & 325 - 143 \end{bmatrix} + \begin{bmatrix} 1182 & 5u & 54 \\ -64 & 270 - 54 \\ -64 & 270 - 54 \end{bmatrix}$$

$$= \begin{bmatrix} 27 & 37 & 37 \\ -63 & 127 & -89 \\ -63 & -63 & 153 \end{bmatrix} + \begin{bmatrix} 117 & 91 & 91 \\ -117 & 325 \end{bmatrix} + \begin{bmatrix} 1182 & 5u & 54 \\ -64 & 270 - 54 \\ -64 & 270 - 54 \end{bmatrix}$$

$$= \begin{bmatrix} 27 & 317 & 4$$

$$72A^{-1} = \begin{bmatrix} 9 & 7 & 7 \\ -9 & 25 & -11 \\ 9 & -9 & 27 \end{bmatrix} - 18 \begin{bmatrix} 39 & 13 & 13 \\ 13 & -13 & 15 \end{bmatrix} + \begin{bmatrix} 54 & 10 \\ 0 & 64 & 6 \\ 0 & 0 & 54 \end{bmatrix}$$

$$72A^{-1} = \begin{bmatrix} 9 - 39 + 544 & 7 - 13 + 0 & 7 - 13 + 0 \\ -9 + 13 + 0 & 25 - 65 + 64 & -11 + 13 + 0 \\ 9 - 13 + 0 & -9 + 13 + 0 & 27 - 65 + 54 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 14 & 16 \\ -4 & 4 & 16 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & -1 & 16 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & -1 & -1 \\ 3$$

By coley Hamilton theorem
$$A^{3} + A^{2} + 18A - 4801 = 0$$

$$A^{3} = \begin{bmatrix} 1 & 9 & 3 \\ 2 & -1 & 4 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 9 & 3 \\ 2 & -1 & 4 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 11419 & 2 - 2 + 3 & -3 + 8 - 3 \\ 2 - 2 + 12 & 4 + 1 + 44 & 6 - 4 - 4 \\ 3 + 2 - 3 & 6 - 1 - 1 & 9 + 4 + 1 \end{bmatrix} = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 14 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 - 2 \\ 2 & 4 & 14 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 14 \end{bmatrix}$$

$$A^{3} + 18 + 12 = \begin{bmatrix} 14 + 16 + 12 & 18 & 18 \\ 2 & 4 & 14 \end{bmatrix} \begin{bmatrix} 14 + 16 + 12 & 18 \\ 36 & -18 & 72 \\ 24 & 13 & 74 \end{bmatrix} \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 24 & 13 & 74 \end{bmatrix} \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 24 & 13 & 74 \end{bmatrix} \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 24 & 13 & 74 \end{bmatrix} \begin{bmatrix} 14 & 3 & 8 \\ 36 & -18 & 72 \\ 52 & 14 & 8 \end{bmatrix} \begin{bmatrix} 14 & 3 & 8 \\ 2 & 4 & 14 \end{bmatrix} \begin{bmatrix} 14 & 3 & 8 \\ 2 & 4 & 14 \end{bmatrix} \begin{bmatrix} 14 & 3 & 74 \\ 36 & -18 & 72 \end{bmatrix} \begin{bmatrix} 14 & 6 & 6 & 6 \\ 6 & 14 & 14 \end{bmatrix} \begin{bmatrix} 14 & 14 & 14 \\ 6 & 14 & 14 \end{bmatrix} \begin{bmatrix} 14 & 14 & 14 \\ 6 & 14 & 14 \end{bmatrix} \begin{bmatrix} 14 & 14 & 14 \\ 6 & 14 & 14 \end{bmatrix} \begin{bmatrix} 14 & 14 & 14 \\ 6 & 14 & 14 \end{bmatrix} \begin{bmatrix} 14 & 14 & 14 \\ 6 & 14 & 14 \end{bmatrix} \begin{bmatrix} 14 & 14 & 14 \\ 6 & 14 &$$

$$A^{2} + A - 18I = u0A_{1}^{-1}$$

$$u0A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 9 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \end{bmatrix} - \begin{bmatrix} 18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1041 & -18 & 3+2-8 & 8+3+0 \\ 12+2-0 & 9-1-18 & -2+u+0 \\ 2+3+0 & u+(+0 & 1u-1-18) \end{bmatrix} + \begin{bmatrix} -3 & 5 & 11 \\ 19 & -10 & 2 \\ 5 & 5 & -5 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -u & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -u & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -u & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -u & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 - A & 2 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 8 - A & 2 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 12 & 0 & 0 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 12 & 0 & 0 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \\ 4 & -3 - A & -2 \\ 3 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 14 & 10 & 10 & 10 \\ 4 & -3 - A & 10 \end{bmatrix}$$

$$A^{-1} =$$

AB-622 > +22=0

By colcy Homelton theorems =
$$1.81 - 0.15$$
 A $\frac{3}{2}64$ $\frac{3}{2}$ $\frac{1}{1}2$ $\frac{3}{2}$ $\frac{1}{1}$ $\frac{3}{2}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3}{4$

Scanned with CamScanner

canned with CamScann

The chorestrict equation of 4.75

$$|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 5 & 6 - \lambda \end{bmatrix} = 0$$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 5 & 6 - \lambda \end{bmatrix} = 0$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 5 & 6 - \lambda \end{bmatrix} = 0$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 - \lambda \end{bmatrix} = 0$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \end{pmatrix} = 0$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \end{pmatrix} = 0$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$
 $|A-\lambda I| = 0 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4$

Lo S () 1 () 1 () 1 () 2 () 1 () 2 () 2 () 2 () 2 () 3 () 3 () 4 (

3. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 express $2A^5 - 3A^4 + A^2 - 4I$ as a pote $\begin{bmatrix} -1 & 2 \end{bmatrix}$ enter polynomial in A

2018
Solut Given matrix

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

The choroeteristic mother of A PS

$$(A - \lambda I) = \begin{bmatrix} 3 & 1 \\ -1 & 9 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

$$= \begin{bmatrix} 3 - \lambda & 1 \\ -1 & 9 - \lambda \end{bmatrix}$$

The characteristic equation of A is

$$|A-\lambda I| = 0$$

$$|3-\lambda I| = 0$$

$$|-1 9-\lambda| = 0$$
[Decomposition of the problem of the

$$(3-\lambda)(2-\lambda)+1=0$$

$$6-2\lambda-3\lambda+\lambda^{2}+1=0$$

$$\lambda^{2}-5\lambda+7=0$$

By coly Hamilton theorem

2A5-3A4+A2-UI = 2[5A4-7A3]-3A4+A2-UI

· a miles problem on.

=
$$91 [5A^{2} - 7A] - u8A^{2} - uI$$

= $57A^{2} - 1u7A - uI$
= $138A - u_{03}I$
= $138A - u_{03}I$
= $138A - u_{03}I$
= $13BA - u_{03}I$
=

Greven equation

Scanned with CamScanner

16-415-1814-1213-+14A2 AK-14' = (UAS-5A4) - UAS +8A4=12A3+LUA2 = 3A4-12A3+1UA2 = 3-[4A3-5A2] -12A3. +1UA.2 = -15A2-+1UA2 = -A2 = -UA+5I

* A homogeneous expression of the second acgru Quadratec Forms in any no of variables is called a suodrate

Ez:1.32215xy-2y2 is a quadrater form in 28.y form. 2. 72+2y2-322+27y2+522 is a Quadratic formin

three variables. * An expression of the form $Q = E(X^TAX) = \sum_{j=1}^{n} \sum_{j=1}^{n} y^{-1}$

Ay are constants is called a quadratel form in Ali X, xj where n vorrobles.

Matrix of a Quadratec form

Every Quadrate form & can be expressed as Q = XTAX The symmetric matrix A is called the matrix of the auadrotec form a and IAI es called the descremenant of the Quadratic form

* If IAl=0 the auadrate form 95 singlur Note:

* Exi. To write the matrix of Quadratic form follow the dragram given below

dragonal and drivide the co-efficients of the product terms, 24, 42, 22 by 2 and write them at the appropriate places.

$$a = 7xx + uxy + uxy + 2y + 22 + 22 + 3yy - 52 = 1$$

$$= 72x + 42y + 22$$

$$= 42x + 42y + 2$$

$$= 42x + 3yy + 2y^{2}$$

$$A = \begin{bmatrix} 7 & 4 & 1 \\ u & 3 & 9/2 \\ 1 & 9/2 & -5 \end{bmatrix}$$

$$X = \begin{bmatrix} x \\ y \end{bmatrix}; \quad X =$$

$$0 = \chi T_{A} \chi = [\chi y + J \begin{bmatrix} 7 & 4 & 1 \\ 4 & 3 & 9/2 \\ 1 & 9/2 & -6 \end{bmatrix} \begin{bmatrix} \chi \\ y \\ z \end{bmatrix}$$

wrete the symmetric matrin of the fo

canned with CamScanne

$$A =
 \begin{bmatrix}
 0 & 2 & 4 \\
 2 & 0 & 3 \\
 u & 3 & 0
 \end{bmatrix}$$

$$Q = 27x - 37y + 92x$$

$$-37y - 3yy - 5yz$$

$$122x - 52y + 52z$$

$$A = \begin{bmatrix} 2 & -3 & 2 \\ -3 & -3 & -1/2 \\ 2 & -1/2 & 5 \end{bmatrix}$$

write the Quadratec form of corresponding to the

$$\begin{array}{c|cccc}
motrix \\
1 & 3 & 3 \\
2 & 0 & 3 \\
3 & 3 & 1
\end{array}$$

$$\begin{bmatrix}
 1 & 9 & 3 \\
 2 & 0 & 3 \\
 3 & 3 & 1
 \end{bmatrix}
 \begin{bmatrix}
 9 & 1 & 5 \\
 1 & 3 & -2 \\
 5 & -2 & 4
 \end{bmatrix}
 \begin{bmatrix}
 1 & 2 & 5 \\
 2 & 0 & 3 \\
 5 & 3 & 4
 \end{bmatrix}$$

Rank of a Quadratec form Let XTAX be a Quadrater form the rank RLA) 98 called the rank of the auadratec form. If 'r'is lysthan n, IAI = 0 Lor) A is singular then the ouodrate form is called singular otherwise " non -singular " Canonecal Form (or) Normal form of a Quadratec Let XTAX be a auadratec form en n variables form then there exsist a real non-singular linear transfor motion X= Py which tronsforms XTAX to onother quadratic form of type yTDy = \(\lambda_1 \text{Y}_1^2 + \lambda_2 \text{Y}_2^2 + \lambda_3 \text{Y}_3^2 + \lambda_4 \text{Y}_2 \text{Y}_2 \text{Y}_3 \text{Y}_3^2 + \lambda_4 \text{Y}_2 \text{Y}_2 \text{Y}_3 \text{Y}_3^2 + \lambda_4 \text{Y}_2 \text{Y}_2 \text{Y}_3 \text{Y - - tanyor then y by is called the concentral form Here D = drag($\lambda_1, \lambda_2, \lambda_3 - - - \lambda_0$) of a undratec form. of XTAX Index of a Real Quadratec Form Index of a 'Keal Guadratic rooms in canonical
The number of positive terms in canonical
form of quadratic form is known as the index of the

Quadrate form and is denoted by sinth - s

Signature of a Quadratic form

If it is the rank of the Quadrates form and 's is the index of the Quadrotic form then 25-1 is colled the signature of the auadratic form xTax. frature of Quadrate forms tyre + yrut box + 12y t

a) Positive Definite The Quadratec form xTAX in n'vorrables es gard to be positive Definite of all the Eigen values of a are positive (or) of r=n and s=n i.e., r=s=n A D Negative Desinite The quadrater form xTax in n vorgables ?s gold to be negative definite if ren and s=0 (ov) of all the ergen values of A are negative. => Positive- Semi-Definite
The Quadratec form XTAX in n. variables is sand to be positive semi definite. If r<n & S=r (or) If all the eigen values of A > 0 and atteast one eigen value is zero > fregotive- Semi- Definite

The Quadratic form XTAX in n variables PS sand to be negative semi definite if rings=0 (or) said to be negative semidelinite, it and affects one Thall when eigen values of $A \leq 0$, and affects one =) In-Defenete In all other cases, if all the eigen value of A are positive and negatives then the auadratec form es called en-defenrte a Referrate x . Ra Ex 1 . JA16X -1.0.0-X : 3 - A than represent two one story ord the remarking of 1. do. timm 75 post leve Sour, do to the

1. Identify the nature of the Ouadratec forms P) x12+4x22+23 -4x1x2+27, x3 -422x3 PP) 22+ 4xy +6x2-y2+242+422 186) x + 4 2+ 25 = - 3xy + 2x 5 (N) 2x2-19-42-4622 1874 1842 +622 solul ?) Greven Quadrater form Rven Quadratt 10. Q = 712+4722+723, - 47172+97173-47273 $Q = X^{T}AX$, $A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & -4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ characterestic equation of A is 1A-XI) =0 $\begin{vmatrix} -2 & 4-\lambda & -2 \\ -2 & 1-\lambda \end{vmatrix} = 0$ x) [[u-x)(1-x) -4] +2[-2(1-x)+2] +1(4-144-x)]=0 N) [4-1-41+2 +1]+2[-2+21+2]+4-4+2=0 1-1) [12-5/2]+4x+x=0 $\lambda^2 = 5\lambda - \lambda^3 + 5\lambda^2 + 5\lambda = 0$ $-\lambda^{3}+6\lambda^{2}=0$ X8 = 6 Xx $\lambda = 6$; $\lambda = 0,0,6$ Ergen values two ore zeroes and the remagning ince geven Quadratec form es posetive semi defenste

Quadratel form a = 222+942+622+874+842+62x $A = X^T A X$; $A = \begin{bmatrix} 2 & 4 & 3 \\ 4 & 9 & 4 \\ 3 & 4 & 6 \end{bmatrix}$ The characteristic equation of A is |A-λI| =0 $\begin{vmatrix}
2-\lambda & 4 & 3 \\
4 & 9-\lambda & 4
\end{vmatrix} = 0$ $\begin{vmatrix}
3 & 4 & 6-\lambda \\
9-\lambda
\end{vmatrix} = 0$ $[9-\lambda)[(9-\lambda)(6-\lambda)-16] - 4[4(6-\lambda)-12] + 3[16-3(9-\lambda)] = 0$ (2-x) [54-6x=9x+x2-16]-4[24-4x-12]+3[16-27+3x]=6 (2-1) [BB = 15) +12] -4[12-42]+3[3)-11]=0 $2\lambda^2 - 30\lambda + 76 - \lambda^3 + 15\lambda^2 - \frac{38}{5}\lambda - 48 + 16\lambda + 9\lambda - 33 = 0$ - \3+17\2-43\-5=000 11 / Adil 3/18/18/18/18/18

Given Quadrote form

$$A = x^2 + 47y + 677 - y^2 + 5y2 + 42^2$$
 $A = x^7 A x, A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & 1 & 4 \end{bmatrix}$

The characteristic equation of A 15

-[...(1-))[(-1-))(u-))-1]-2[2[u-))-3]+3[2-3[-1-]) (1-1) [-4-47+3+3]-9[8-27-6] +3[2+3+3]=

$$(1-\lambda) \left[-u - u\lambda + \lambda + \lambda^{2} - 1 \right] - 9 \left[8 - 2 \lambda + 5 \right] = 0$$

$$(1-\lambda) \left[\lambda^{2} - 3\lambda - 5 \right] - 9 \left[-2\lambda + 2 \right] + 3 \left[3\lambda + 5 \right] = 0$$

$$(1-\lambda) \left[\lambda^{2} - 3\lambda - 5 \right] - 9 \left[-2\lambda + 2 \right] + 3 \left[3\lambda + 15 \right] = 0$$

$$\frac{1-\lambda}{\lambda^{2}-3\lambda-5} - 2 \left[-2\lambda+2\right] + 3 \left[0\lambda + 15 = 0\right]$$

$$\frac{\lambda^{2}-3\lambda-5-\lambda^{3}-3\lambda^{2}+5\lambda+u\lambda-u}{\lambda^{2}-3\lambda-5-\lambda^{3}-3\lambda^{2}+5\lambda+u\lambda-u}$$

Given Quadratic form

$$0 = t^2 + y^2 + 32^2 - 2\pi y + 2\pi^2$$
 $0 = xTAxA = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 9 & 0 & 2 \end{bmatrix}$

The characteristic equation of A is

 $|A-\lambda I| = 0$
 $|A$

$$A = \begin{bmatrix} 2 & 1 & 5 \\ 1 & 3 & -2 \\ 5 & -2 & 4 \end{bmatrix} \quad \chi = \begin{bmatrix} \chi & \chi & \chi \\ \chi & \chi & \chi \end{bmatrix}; \chi = \begin{bmatrix} \chi & \chi \\ \chi & \chi \\ \chi & \chi \end{bmatrix}$$

Quadratic form a= XTAX

$$= \begin{bmatrix} x & y & \overline{z} \end{bmatrix} \begin{bmatrix} 2 & 1 & 5 \\ 1 & 3 & -2 \\ 5 & -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ \overline{z} \end{bmatrix}$$

$$= 2\chi^{2} + \chi y + 5 = \chi + \chi y + 3y^{2} + 2\chi + 5 = \chi - 2\chi + 4\chi + 2\chi$$

Gieven matrix

ven matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{bmatrix} \quad x = \begin{bmatrix} x & y & z \\ y & z \end{bmatrix}; x = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$

Quadratec form Q = XTAX

$$= \begin{bmatrix} \chi & y & \pm \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ y \\ \xi \end{bmatrix}$$

=
$$[x+2y+32 2x+y+32 3x+3y+2]$$
 $\begin{bmatrix} x\\ y\\ z \end{bmatrix}$

$$= \left[\chi^2 + 2 \chi y + 3 + \chi \chi + 2 \chi y + y^2 + 3 + y + 3 + 1 + 3 y + 3 + 2 \chi + 2 \chi y + y^2 + 3 + y + 3 + 1 + 3 y + 3 + 2 \chi + 2 \chi y + 3 + 2 \chi$$

6. Given matrez $A = \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix} \quad \chi T = [x y z]; X$ Budratec form Q= XTAX = [5y-2 5x+y+62 -x+6y+22] [x] = [715y=2x+5xy+y2+62y-x2+6y2+222] in Reduce the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$ to a diagonal part and interrupt the auditate forms of also find the rank also find the rank Quadrater forms signature, Index.

$$\begin{bmatrix} 6 & -9 & 2 \\ 0 & 7 & -1 \\ 0 & -1 & 7 \end{bmatrix} \begin{array}{c} R_2 \rightarrow 3R_2 + R_1 \\ R_3 \rightarrow 3R_3 = R_1 \end{array} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & 0 & 3 \end{bmatrix} A \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 21 & 3 \\ 0 & -3 & 21 \end{bmatrix} \begin{array}{c} c_2 \rightarrow 3c_2 + c_1 \\ c_3 \rightarrow 3c_3 = c_1 \end{array} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & 0 & 3 \end{bmatrix} A \begin{bmatrix} 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 21 & -3 \\ 0 & 0 & 1uu \end{bmatrix} \begin{array}{c} R_3 \rightarrow 7R_3 + R_2 \\ 0 & 0 & 3 & 21 \end{bmatrix} A \begin{bmatrix} 0 & 3 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 3 \end{bmatrix}$$

GITVEN Solul Quadratic form

= P7, 3+ x22-3232+197, x2-87223-47,73

girven auadratec form into mo1292

$$A = \begin{bmatrix} 2 & 6 & -2 \\ 6 & 1 & -4 \\ -2 & -4 & -3 \end{bmatrix}$$

 $A = J_3 A J_3$

$$\begin{bmatrix} 0 & 6 & -12 \\ 6 & 1 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 6 & -2 \\ 0 & -17 & 2 \\ 0 & 2 & -5 \end{bmatrix} R_2 - 3R_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Try , ph . igs

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -17 & 2 \\ 0 & 2 & -5 \end{bmatrix} \xrightarrow{C_2 \to C_2 - 3C_1} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \xrightarrow{A} \begin{bmatrix} 0 & -3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -17 & 2 \\ 0 & 0 & 81 \end{bmatrix} R_3 \rightarrow -17 R_3 - 3R_2 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -11 & -2 & -17 \end{bmatrix} A \begin{bmatrix} 1 & -3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 7 & 0 \\ 0 & 6 & 1377 \end{bmatrix} (23 - 7) + 17 (3 + 7) (2) = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -11 & 12 & -17 \end{bmatrix} A \begin{bmatrix} 1 & -3 & -11 \\ 0 & 1 & -2 \\ 0 & 0 & -17 \end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & -17 & 2 \\
0 & 0 & 81
\end{bmatrix}
R_3 \rightarrow -17R_3 - 3R_2 =
\begin{bmatrix}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-11 & -2 & -17
\end{bmatrix}
A
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -3 & -11 \\
0 & 0 & -17
\end{bmatrix}$$

Quadratal form = XTAX

$$= [xy^2] \begin{bmatrix} 2 & 6 & -2 \\ 6 & 1 & -4 \\ -2 & -4 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2x^2 + 6xy - 22x \\ +6x \cdot y + y^2 - 42y \\ -2x + 6y - 2z + 6x + y - 4z - 2x - 4y - 3z \end{bmatrix}$$

2x2+y2= 322 +12xy - 42x - 82y Non songular transformation corresponding to the matrex p es x= py $\begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & -3 & -11 \\ 0 & 1 & -9 \\ 0 & 0 & -17 \end{bmatrix} \begin{bmatrix} 91 \\ 92 \\ 93 \end{bmatrix}$ $= \left[9_{1} - 3y_{2} - 11y_{3} \quad y_{2} - 2y_{3} - 17y_{3} \right]$ 1=4,-342-1143; 4=42-243, 2=-17-73 Canonscal form = y TDy = 24,2-1742+137743 Panlet of A PS. PLA) = 3 Index 5 = 2 4 = 90 04 signature = 25-r = 2(2)-3=1 Mation.

Working Rule: 1. write the co-efficient matrix A' associated with the 2. Find the Ergen values of A 3. write the canonical form using Nixi thay, 2+ ... #4 Form the matrix p containing the normalized eigen vectors of A as column vectors. Then X= Py gives the orequired orthogonal transformation which reduces quadrate form to canonical form

Reduce the auddrales form 3x2+2y2+322-27y-2yz gieven auadratec form Q = 3x 2+242-1322-274-2425 The motorn form characteristic equation of A 95 1A-X=1 =0 3-2 -1 0 (3-A)[(2-A)(3-A)-1]+1[-(3-A)-0]+0=0 (3-2) [6-32-22-1]+[-3+2]=0 (3-A) [x25x+5]-3+x=0 32-152+15-23+522-52-3+2=0 - 13-182 - 192 + 12 = 0 $\lambda^{3} = 8\lambda^{3} + 19\lambda - 12 = 0$ 1 = 1 - 8 = 19 - 12 1 = 7 + 12 = 10(x-1)[x=7x+12)=0 (x-1)[x=4x+12]=0 (x-1)[(x(x-u)-3(x-u)]=00 (x-1) [x-4)(x-3)=0 The are the characteristic roots 1,4,3

$$-\chi - \chi = 0$$

$$-\chi = = 0$$

case (994)

If
$$\lambda = 3$$
; then $(A - \lambda I) \times = 0$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 \end{bmatrix} \times \begin{bmatrix}$$

x. we obsenved that x1x2, x3 are mutually lier 24/8 404 3/18

The normalazed vectors are

$$P = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & c_3 & \frac{1}{13} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{13} & \frac{1}{13} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{13} & \frac{1}{13} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ \frac$$

orthogonal transformation X = (PY[A - 1] + [[] - 1] [- 12 - 31 $\begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/16 & -1/15 & 1/13 \\ 2/17 & 0 & -1/13 \\ 1/16 & 1/17 & 1/13 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ $y - y_1 \quad y_2 \quad y_3$ y = 241 - 43/B > = 1 (A E) pate 2. Reduce the anadrate form 3x2+5y2+322-2yz +22x-2xy to the canonical form by orthogonal reduction 2 3. $\chi_1^2 + 3\chi_2^2 + 3\chi_3^2 - 2\chi_2\chi_3$ 222+242+222-2x4-242-25x Given Quadratic form en $Q \cdot F = 32^{2} + 5y^{2} + 3z^{2} - 3yz + 2zx - 3zy$ The characteristic equation of A-is characterio. $|A-\lambda I|=0$ $|3-\lambda -1|$ |-1| $|3-\lambda -1|$ |-1| $|3-\lambda -1|$ $|3-\lambda -1|$ |3-

anned with CamScan

$$\begin{aligned}
& \text{If } \lambda = 8 & (A - \lambda I) X = 0 \\
& \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \chi \\ y \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\end{aligned}$$

$$\begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} xy \\ yz \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \chi \\ y \\ \chi \end{bmatrix} R_2 \rightarrow R_2 + R_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$x_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

erved that x, x2, x3 are mutually perpends what

The normalized vectors

The normalized
$$e_1 = \begin{bmatrix} -\frac{1}{12} \\ -\frac{1}{12} \\ 0 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$ $e_3 = \begin{bmatrix} -\frac{2}{16} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$

$$P^{2} \left[e_{1} \ e_{2} \ e_{3} \right] = \begin{bmatrix} -1/2 & 1/3 & 1/6 \\ 0 & 1/3 & 21/6 \\ 1/6 & 1/6 \end{bmatrix}$$

4. Given Oundrate form

$$a.r = 21^{2}j \cdot 2y^{2} + 2z^{2} = 2xy - 2y \cdot 2 - 2z^{2}$$

motres

 $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \end{bmatrix}$

The chorocterestic equation of A is

 $[A - \lambda I] = 0$
 $[A - \lambda I] = 0$
 $[A - \lambda] \begin{bmatrix} 2 - \lambda \\ -1 & -1 \end{bmatrix} + 1 \begin{bmatrix} -(2 - \lambda) - 1 \end{bmatrix} - 1 \begin{bmatrix} 1 + (2 - \lambda) \end{bmatrix} = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + \lambda 2 - 1 \end{bmatrix} + 1 \begin{bmatrix} -(2 + \lambda) - 1 \end{bmatrix} - [1 + 2 - \lambda] = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + \lambda 2 + 3 \end{bmatrix} + [\lambda - 3] - [3 - \lambda] = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 \end{bmatrix} + [\lambda - 3] - [3 - \lambda] = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 \end{bmatrix} + 3 - 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 - 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3 = 0$
 $(2 - \lambda) \begin{bmatrix} 1 - \lambda \\ 2 - \lambda \end{bmatrix} + 3$

$$\begin{bmatrix} 2 & -1 & -i \\ 0 & 8 & -3 \\ 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ y \\ R_{3} \rightarrow 2R_{3} + R_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 9 & -1 & -1 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \\ R_{3} \rightarrow 2R_{3} + R_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$C(A) = 2; \quad n = 3$$

$$A - r = 3 - 2 = 1 \quad L \cdot I \cdot S$$

$$27 - y - 2 = 0 \quad ; \quad 3y - 3k = 0$$

$$2 = k \quad 3y - 3k = 0$$

$$2 = k \quad 3y = 3k$$

$$y = k$$

$$x_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} k$$

$$Casc\ L7P$$

$$Tf \lambda = 3; \quad tA - \lambda I \times X = 0$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \\ 2 \end{bmatrix} R_{2} \rightarrow R_{2} - R_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$C(A) = 1; \quad A = 3$$

$$A - r = 3 - i = 2 \quad L \cdot I \cdot S$$

$$- x - y - 2 = 0; \quad y = k_{1}; \quad 2 = k_{2}$$

$$- x - k_{1} - k_{2} = 0$$

$$x = -(k_{1} + k_{2}) = 0$$

$$x = -(k_{1} + k_$$

DIAGONALISATION

if square matrix of A order of has a linearly indipendent Bign rectored them a matrix of Can be found bouch that shinward American advise a diagonal matrix

AS = 4At SATH SAT

here

of the given matory.

8. O diagonaline the mator A & - A F + FA & - FA F + FA

2)
$$\frac{1}{12} = \frac{1}{12} = \frac{1}{1$$

The elled, d. V 0 = | Th - A1 $\begin{vmatrix}
1-\lambda & 1 & -2 \\
-1 & 2-\lambda & A
\end{vmatrix} = 20$ $\begin{vmatrix}
-1-\lambda & 1 & -2 \\
0 & 1 & -1-\lambda
\end{vmatrix} = -1-\lambda$ $(1-\lambda) \left[(2-\lambda)(-1-\lambda) - 1 \right] - 1 \left[-1(-1-\lambda) - 0 \right] - 2\left[-1-0 \right] = 0$ (1-1) [-2-21+1+12-1]-1(1+1)+2=0 (1-4)[x2- x-3]-1- x+2=0 6 + 16 C (1-x)(x2-x-3)-x+1=0=>(1-x)(x2-x-3)-x+1 $\lambda^{2} - \lambda = 3 - \lambda^{3} + \lambda^{2} + 3\lambda - \lambda + 1 = 0$ $(1 - \lambda)(\lambda^{2} - \lambda - 3)$ - x3+2x2+x-2=0 x3-2 d2-x+2=0 1213 1-2-1+2=00 = 5 D= [x172, xi] -21+2 0 = 5/18. (A-1)(A2- X-2) = 0 A-1=0 $|A^2-A-2=0$ $|A^2-A-1=0$ 1=-1,1,2.

The eigen roots of A gre -1, 1, 2

Core 8

$$\begin{bmatrix} 2 & 1 & -2 \\ -1 & 3 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}$$

Put y = 0 in egh @ & eql & 0 = 5 - 4 + 5 K C + 8 K -

2 x - 2 z = 6 - 1 1 1 1 5 - 6 [MINIT - # + 2 = 0 0 = SPI-5-1 6 1 26

lef 2 = 16

g.mg $\begin{bmatrix} x \\ dz \end{bmatrix} = \begin{bmatrix} K \\ o \\ k \end{bmatrix} = K \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$ cuse - I $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ ref

Core-D

If
$$A = 2$$
 them $\{A - AJ\} \ge 0$

$$\begin{bmatrix}
-1 & 1 & -2 \\
-1 & 0 & 1 \\
0 & 1 & -3
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} =$$

Co - factor matrix of
$$6 = \begin{bmatrix} -1 & 3 & 2 \\ -2 & 0 & 2 \\ -2 & -3 & 2 \end{bmatrix}$$

adj $6 = \begin{bmatrix} -1 & -2 & 7 \\ 3 & 0 & -3 \\ -2 & 2 & 2 \end{bmatrix}$

$$6 = \begin{bmatrix} -1 & -2 & 7 \\ 3 & 0 & -3 \\ -2 & 2 & 2 \end{bmatrix}$$

$$6 = \begin{bmatrix} -1 & -2 & 7 \\ 3 & 0 & -3 \\ -2 & 2 & 2 \end{bmatrix}$$

$$6 = \begin{bmatrix} -1 & -2 & 7 \\ 3 & 0 & -3 \\ -2 & 2 & 2 \end{bmatrix}$$

$$6 = \begin{bmatrix} -1 & -2 & 7 \\ 3 & 0 & -3 \\ -2 & 2 & 2 \end{bmatrix}$$

$$6 = \begin{bmatrix} -1 & -2 & 7 \\ 3 & 0 & -3 \\ -2 & 2 & 2 \end{bmatrix}$$

$$6 = \begin{bmatrix} -1 & -2 & 7 \\ -1 & 2 & 1 \\ 3 & 0 & 1 \end{bmatrix}$$

$$7 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 0 & -2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$1 = \begin{bmatrix} -1 & 2 & 7 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$1 = \begin{bmatrix}$$

Diagonalisation by orthogonal togns.

a characterists matrix of q will not be linearly indipendent, and also warre orthogonal. If we normalise each characteristics rector or eign rectors (x) we deside each component of x by the square root of the sum of the squares of all elements, write all mosmalized eign rectors to form mormalized water model matrix B them it can be early shown that B is an orthogonal matrix and !

B equal to B fogmapare.

therefore the symplesity toghtform

BAB = D

Where Dis the diagonal matria.

This transformation & transport AB is equel to D. is known as orthogonal transformation.

20 calculation of powers of 9 matrix.

Let, A be the given matrix of AB order 3
We know that

D = B AB D2 = (B'AB) (B'AB) (8'A) (88") (AA) = (B'A) (1) (AB) DDMB1)= B(B1AMB)B-1 A = [-1 0 = 1 | 1 -2 | 1 | my -0 = [A] X sol!. The CH matrix of A canned with CamScanne

$$\frac{d \cdot nq}{1 - 1 - 2} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & -\lambda & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & -\lambda & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & 1 - \lambda & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & 1 - \lambda & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & 1 - \lambda & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & 1 - \lambda & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & 1 & -2 \\ 1 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & 1 & -1 \\ 1 & 1 & -2 \\$$

The ch roots of the equision 1.1.4.

CONE D

if
$$A = -1$$
, then

$$A - AI = 0$$

$$A -$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2k_1 \\ -k_1 \end{bmatrix} = k_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 1 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 1 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 0 \\$$

Notes on singular value decomposition for Math 54

Recall that if A is a symmetric $n \times n$ matrix, then A has real eigenvalues $\lambda_1, \ldots, \lambda_n$ (possibly repeated), and \mathbb{R}^n has an orthonormal basis v_1, \ldots, v_n , where each vector v_i is an eigenvector of A with eigenvalue λ_i . Then

$$A = PDP^{-1}$$

where P is the matrix whose columns are v_1, \ldots, v_n , and D is the diagonal matrix whose diagonal entries are $\lambda_1, \ldots, \lambda_n$. Since the vectors v_1, \ldots, v_n are orthonormal, the matrix P is orthogonal, i.e. $P^TP = I$, so we can alternately write the above equation as

$$A = PDP^{T} \tag{1}$$

A singular value decomposition (SVD) is a generalization of this where A is an $m \times n$ matrix which does not have to be symmetric or even square.

1 Singular values

Let A be an $m \times n$ matrix. Before explaining what a singular value decomposition is, we first need to define the singular values of A.

Consider the matrix A^TA . This is a symmetric $n \times n$ matrix, so its eigenvalues are real.

Lemma 1.1. If λ is an eigenvalue of A^TA , then $\lambda \geq 0$.

Proof. Let x be an eigenvector of A^TA with eigenvalue λ . We compute that

$$||Ax||^2 = (Ax) \cdot (Ax) = (Ax)^T Ax = x^T A^T Ax = x^T (\lambda x) = \lambda x^T x = \lambda ||x||^2$$

Since $||Ax||^2 \ge 0$, it follows from the above equation that $\lambda ||x||^2 \ge 0$. Since $||x||^2 > 0$ (as our convention is that eigenvectors are nonzero), we deduce that $\lambda \ge 0$.

Let $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of A^TA , with repetitions. Order these so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Let $\sigma_i = \sqrt{\lambda_i}$, so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

Definition 1.2. The numbers $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ defined above are called the singular values of A.

Proposition 1.3. The number of nonzero singular values of A equals the rank of A.

Proof. The rank of any square matrix equals the number of nonzero eigenvalues (with repetitions), so the number of nonzero singular values of A equals the rank of A^TA . By a previous homework problem, A^TA and A have the same kernel. It then follows from the "rank-nullity" theorem that A^TA and A have the same rank.

Remark 1.4. In particular, if A is an $m \times n$ matrix with m < n, then A has at most m nonzero singular values, because $\operatorname{rank}(A) \leq m$.

The singular values of A have the following geometric significance.

Proposition 1.5. Let A be an $m \times n$ matrix. Then the maximum value of ||Ax||, where x ranges over unit vectors in \mathbb{R}^n , is the largest singular value σ_1 , and this is achieved when x is an eigenvector of A^TA with eigenvalue σ_1^2 .

Proof. Let v_1, \ldots, v_n be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A^TA with eigenvalues σ_i^2 . If $x \in \mathbb{R}^n$, then we can expand x in this basis as

$$x = c_1 v_1 + \dots + c_n v_n \tag{2}$$

for scalars c_1, \ldots, c_n . Since x is a unit vector, $||x||^2 = 1$, which (since the vectors v_1, \ldots, v_n are orthonormal) means that

$$c_1^2 + \dots + c_n^2 = 1.$$

On the other hand,

$$||Ax||^2 = (Ax) \cdot (Ax) = (Ax)^T (Ax) = x^T A^T Ax = x \cdot (A^T Ax).$$

By (2), since v_i is an eigenvalue of A^TA with eigenvalue σ_i^2 , we have

$$A^T A x = c_1 \sigma_1^2 v_1 + \dots + c_n \sigma_n^2 v_n.$$

Taking the dot prodoct with (2), and using the fact that the vectors v_1, \ldots, v_n are orthonormal, we get

$$||Ax||^2 = x \cdot (A^T Ax) = \sigma_1^2 c_1^2 + \dots + \sigma_n^2 c_n^2.$$
 [

Since σ_1 is the largest singular value, we get

$$||Ax||^2 \le \sigma_1^2(c_1^2 + \dots + c_n^2).$$

Equality holds when $c_1 = 1$ and $c_2 = \cdots = c_n = 0$. Thus the maximum value of $||Ax||^2$ for a unit vector x is σ_1^2 , which is achieved when $x = v_1$. \square

One can similarly show that σ_2 is the maximum of ||Ax|| where x ranges over unit vectors that are orthogonal to v_1 (exercise). Likewise, σ_3 is the maximum of ||Ax|| where x ranges over unit vectors that are orthogonal to v_1 and v_2 ; and so forth.

2 Definition of singular value decomposition

Let A be an $m \times n$ matrix with singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. Let r denote the number of nonzero singular values of A, or equivalently the rank of A.

Definition 2.1. A singular value decomposition of A is a factorization

$$A = U\Sigma V^T$$

where:

- U is an $m \times m$ orthogonal matrix.
- V is an $n \times n$ orthogonal matrix.
- Σ is an $m \times n$ matrix whose i^{th} diagonal entry equals the i^{th} singular value σ_i for i = 1, ..., r. All other entries of Σ are zero.

Example 2.2. If m=n and A is symmetric, let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A, ordered so that $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$. The singular values of A are given by $\sigma_i = |\lambda_i|$ (exercise). Let v_1, \ldots, v_n be orthonormal eigenvectors of A with $Av_i = \lambda_i v_i$. We can then take V to be the matrix whose columns are v_1, \ldots, v_n . (This is the matrix P in equation (1).) The matrix Σ is the diagonal matrix with diagonal entries $|\lambda_1|, \ldots, |\lambda_n|$. (This is almost the same as the matrix D in equation (1), except for the absolute value signs.) Then U must be the matrix whose columns are $\pm v_1, \ldots, \pm v_n$, where the sign next to v_i is + when $\lambda_i \geq 0$, and - when $\lambda_i < 0$. (This is almost the same as P, except we have changed the signs of some of the columns.)

3 How to find a SVD

Let A be an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$, and let r denote the number of nonzero singular values. We now explain how to find a SVD of A.

Let v_1, \ldots, v_n be an orthonormal basis of \mathbb{R}^n , where v_i is an eigenvector of $A^T A$ with eigenvalue σ_i^2 .

Lemma 3.1. (a) $||Av_i|| = \sigma_i$.

(b) If $i \neq j$ then Av_i and Av_j are orthogonal.

Proof. We compute

$$(Av_i) \cdot (Av_j) = (Av_i)^T (Av_j) = v_i^T A^T Av_j = v_i^T \sigma_j^2 v_j = \sigma_j^2 (v_i \cdot v_j).$$

If i = j, then since $||v_i|| = 1$, this calculation tells us that $||Av_i||^2 = \sigma_j^2$, which proves (a). If $i \neq j$, then since $v_i \cdot v_j = 0$, this calculation shows that $(Av_i) \cdot (Av_j) = 0$.

Theorem 3.2. Let A be an $m \times n$ matrix. Then A has a (not unique) singular value decomposition $A = U \Sigma V^T$, where U and V are as follows:

- The columns of V are orthonormal eigenvectors v_1, \ldots, v_n of $A^T A$, where $A^T A v_i = \sigma_i^2 v_i$.
- If $i \leq r$, so that $\sigma_i \neq 0$, then the i^{th} column of U is $\sigma_i^{-1}Av_i$. By Lemma 3.1, these columns are orthonormal, and the remaining columns of U are obtained by arbitrarily extending to an orthonormal basis for \mathbb{R}^m .

Proof. We just have to check that if U and V are defined as above, then $A = U \Sigma V^T$. If $x \in \mathbb{R}^n$, then the components of $V^T x$ are the dot products of the rows of V^T with x, so

$$V^T x = egin{pmatrix} v_1 \cdot x \ v_2 \cdot x \ dots \ v_n \cdot x \end{pmatrix}.$$

Then

$$\Sigma V^T x = \begin{pmatrix} \sigma_1 v_1 \cdot x \\ \sigma_2 v_2 \cdot x \\ \vdots \\ \sigma_r v_r \cdot x \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

When we multiply on the left by U, we get the sum of the columns of U, weighted by the components of the above vector, so that

$$U\Sigma V^T x = (\sigma_1 v_1 \cdot x)\sigma_1^{-1}Av_1 + \dots + (\sigma_r v_r \cdot x)\sigma_r^{-1}Av_r$$
$$= (v_1 \cdot x)Av_1 + \dots + (v_r \cdot x)Av_r.$$

Since $Av_i = 0$ for i > r by Lemma 3.1(a), we can rewrite the above as

$$U\Sigma V^T x = (v_1 \cdot x)Av_1 + \dots + (v_n \cdot x)Av_n$$

$$= Av_1v_1^T x + \dots + Av_nv_n^T x$$

$$= A(v_1v_1^T + \dots + v_nv_n^T)x$$

$$= Ax.$$

In the last line, we have used the fact that if $\{v_1, \ldots, v_n\}$ is an orthonormal basis for \mathbb{R}^n , then $v_1v_1^T + \cdots + v_nv_n^T = I$ (exercise).

Example 3.3. (from Lay's book) Find a singular value decomposition of

$$A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}.$$

Step 1. We first need to find the eigenvalues of A^TA . We compute that

$$A^T A = \begin{pmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{pmatrix}.$$

We know that at least one of the eigenvalues is 0, because this matrix can have rank at most 2. In fact, we can compute that the eigenvalues are $\lambda_1 = 360$, $\lambda_2 = 90$, and $\lambda_3 = 0$. Thus the singular values of A are $\sigma_1 = \sqrt{360} = 6\sqrt{10}$, $\sigma_2 = \sqrt{90} = 3\sqrt{10}$, and $\sigma_3 = 0$. The matrix Σ in a singular value decomposition of A has to be a 2×3 matrix, so it must be

$$\Sigma = \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix}.$$

Step 2. To find a matrix V that we can use, we need to solve for an orthonormal basis of eigenvectors of A^TA . One possibility is

$$v_1 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2/3 \\ -1/3 \\ 2/3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix}.$$

(There are seven other possibilities in which some of the above vectors are multiplied by -1.) Then V is the matrix with v_1, v_2, v_3 as columns, that is

$$V = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}.$$

Step 3. We now find the matrix U. The first column of U is

$$\sigma_1^{-1} A v_1 = \frac{1}{6\sqrt{10}} \begin{pmatrix} 18 \\ 6 \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{pmatrix}.$$

The second column of U is

$$\sigma_2^{-1} A v_2 = \frac{1}{3\sqrt{10}} \begin{pmatrix} 3 \\ 9 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{pmatrix}.$$

Since U is a 2×2 matrix, we do not need any more columns. (If A had only one nonzero singular value, then we would need to add another column to U to make it an orthogonal matrix.) Thus

$$U = \begin{pmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{pmatrix}.$$

To conclude, we have found the singular value decomposition

$$\begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{pmatrix} \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix} \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}^T.$$

4 Applications

Singular values and singular value decompositions are important in analyzing data.

One simple example of this is "rank estimation". Suppose that we have n data points v_1, \ldots, v_n , all of which live in \mathbb{R}^m , where n is much larger than m. Let A be the $m \times n$ matrix with columns v_1, \ldots, v_n . Suppose the data points satisfy some linear relations, so that v_1, \ldots, v_n all lie in an r-dimensional subspace of \mathbb{R}^m . Then we would expect the matrix A to have rank r. However if the data points are obtained from measurements with errors, then the matrix A will probably have full rank m. But only r of the singular values of A will be large, and the other singular values will be close to zero. Thus one can compute an "approximate rank" of A by counting the number of singular values which are much larger than the others, and one expects the measured matrix A to be close to a matrix A' such that the rank of A' is the "approximate rank" of A.

For example, consider the matrix

$$A' = \begin{pmatrix} 1 & 2 & -2 & 3 \\ -4 & 0 & 1 & 2 \\ 3 & -2 & 1 & -5 \end{pmatrix}$$

The matrix A' has rank 2, because all of its columns are points in the subspace $x_1 + x_2 + x_3 = 0$ (but the columns do not all lie in a 1-dimensional subspace). Now suppose we perturb A' to the matrix

$$A = \begin{pmatrix} 1.01 & 2.01 & -2 & 2.99 \\ -4.01 & 0.01 & 1.01 & 2.02 \\ 3.01 & -1.99 & 1 & -4.98 \end{pmatrix}$$

This matrix now has rank 3. But the eigenvalues of A^TA are

$$\sigma_1^2 \approx 58.604$$
, $\sigma_2^2 \approx 19.3973$, $\sigma_3^2 \approx 0.00029$, $\sigma_4^2 = 0$.

Since two of the singular values are much larger than the others, this suggests that A is close to a rank 2 matrix.

For more discussion of how SVD is used to analyze data, see e.g. Lay's book.

5 Exercises (some from Lay's book)

- 1. (a) Find a singular value decomposition of the matrix $A = \begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$.
 - (b) Find a unit vector x for which ||Ax|| is maximized.
- 2. Find a singular value decomposition of $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$.
- 3. (a) Show that if A is an $n \times n$ symmetric matrix, then the singular values of A are the absolute values of the eigenvalues of A.
 - (b) Give an example to show that if A is a 2×2 matrix which is not symmetric, then the singular values of A might not equal the absolute values of the eigenvalues of A.
- 4. Let A be an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$. Let v_1 be an eigenvector of $A^T A$ with eigenvalue σ_1^2 . Show that σ_2 is the maximum value of ||Ax|| where x ranges over unit vectors in \mathbb{R}^n that are orthogonal to v_1 .
- 5. Show that if $\{v_1, \ldots, v_n\}$ is an orthonormal basis for \mathbb{R}^n , then

$$v_1 v_1^T + \dots + v_n v_n^T = I.$$

6. Let A be an $m \times n$ matrix, and let P be an orthogonal $m \times m$ matrix. Show that PA has the same singular values as A.

Pote. Bisection of Method

find the approxymate root of the equation
$$x^3-x$$

1 Find the approxymate root of the equation x^3-x

by using by-section method.

 $f(x) = x^3-x-1$
 $x=0$; $f(0)=0-0-1=-1$
 $x=0$; $f(1)=1-1-1=-1$
 $x=0$; $x=0$;

S.NO	a(-ve)	bl+ve)	$\gamma_n = \frac{\alpha+b}{2}$
1	1	2	1.5 (+ve)
રુ	1	1.5	1.25 (-ve)
3	1.25	1.5	1.3125(-Ve)
4	1.25	1.375	1.3438 (+VC)
5	1.3125		1-3282 (1ve)
6	1.3125	1.3438	1 -00111-VC)
7	1.3125	1.3282	1.32d3(-ve)
8	1.3204	1.3282	1.3263(+ve)
9.	1.3243	1.3282	1.3253(+ve)
10	1.3243	1.3263	1.32 us (+ve)
11	1.3243	1.3253	1-3246(-ve)
.12	1-3243	1-3248	1-3247 (-Ve)
13	1.3246	1-3248	1.3208 (+ ve)
14	1.3247	1.3248	1.32081
15	1-3247 214=715=1.		

2 find the approximate root of the equation cosy-ze by broader method but the requation of the equation cosy-ze by broader
$$f(x) = \cos x - xe^x$$
 $f(x) = \cos x - xe^x$
 $f(x) = \cos x$

Find the	root of the &	quation x3_5x+1=0 bu	r using				
3. Find the root of the Equation x3-5x+1=0 by using bisection method							
edul Greven	(Ad 100) ED	real look of the	the first the				
F(X) = X = 2X + 1 = 0							
7=0, P(0) = 0-510)+1=1 +ve							
$\gamma_{-1}, f(1) = 1-5+1 = -3$							
y = 2 $f(2) = 8 - 5(2) + 1 - 1$							
x=3,1	2(3)= 27-15+	f = 13	OT YEST TO				
$\chi_0 = \frac{2+3}{2} = \frac{5}{2} = 2.5$							
The root 1903 between 2 and 3							
, The YOU,	lies between	8.145 013 4(1)	= 9+6				
S.No	al-ve)	bltve) In:	2				
	a	3	2.5 (+ve)				
1.	2	2012-9- 63-14-60	2.25 (tve)				
2	2	2.5	2.125 (-ve)				
7 4 5	2,	2.25	2.1875(tve)				
3.		2.25	2.15625(+ve)				
4.	2.125	8 8 2.1875	21114-				
5	2.125		2.1407(tve)				
	2.125	2.1563	2.1329 (tve)				
6.	2.125	2.1407	2.129 (+ve)				
7		2.1329	2.127 (-ve)				
8.	2.125	2.129	2.101 (-1/2)				
9	2-125		2.128 (-ve)				
	2.127	2.129	2.1285(tm).				
10.	2, 128	2.129	2.1283(-vr)				
11.	2.128	2.1285	2.1284 (-vc)				
12.	2.1233	2.1285	2.1285(+ve)				
13.	2.1284	2.1385	005				
14.	2.1284	X13=244 = 2.1235	and the state of t				
		Scanned wi	th CamScanner				

4. Find the real root of the equotion 410910 = 1.2

Solul Greven

	21		
5.NO	al-ve)	b(tre)	rn= atb
1	2	3	2.5 (-ve)
2	2.5	3	2.75 (+ve)
3.	2.5	2.75	2.625 (-ve)
4.	2.625	2.75	2.6875(-ve)
5.	2.6875	8.75	2.7188 (-ve)
6.	2.7188	2.75	2.7344 (-ve)
7.	2.7344	2.75	2. 7422 (tve)
3 .	9.7344	2.71122	2.7383 (-40)

S. T. C.		**************************************	The state of the s
9. 2.	7383 2	.7422	2.7403 (-ve)
9.	7403	2.7422	2.7413 (+ve)
10. 2	.7403	2.7413	2.7408 (+ve)
11	.7408	2.7413	2.7411 (tvc)
112		2.7411	2.74+ (+vc)
12	7408		2.7409 (tve)
14. 2	. 7408	2.741	2.7409 (tve)
	·7408	2.7409	222 2.7409]
(3	·7408	2.7409	
11.85		2.7408	2. 74061-ve)
12. 2	.7403		·2.7407 (+vc)
	.7406	2.7408	2.7407 (+vc)
	2.7406	2.7407	v =v
100	0	u= 2.7407	8/0/18
			equation 2-losx =0
5- fond the	approximate	root of me	equation 2-cosx =0-T
5 111d 1120	bi-scetion	method	by asser storoteve
	1		0
ioly Given	2 2 W(Y =	0	Color Color
+(7	$) = \chi - (0)\chi = 0$	-1 -ve	(1)
720, f	(0)=0-(0)0=	-1-0.5403	tve
Xzi, f	P(1) = 1-los(1)	= 0.4597	L-1 ∈ (1β) (cχ
		2014311	8 - 191 9-8
20 = 0	2 = 0.5	behave 1	$ \chi_n = \frac{a+b}{2} $
	al-ve)	b(+ve)	211 2
5.NO	dever		0.5 t-ve)
1.	6	CH : IC	
		Atting 2	0.75 (tve)
2.	0.5	0.75	0.625(-ve)
3-	0.5	and the second	0.6875 (-10)
4.	0.625	0.75	0.7188(-vc)
5-	0.6875	0.75	CITIC STA

6	0.7188	0.75	0.73 441-veg
7	0.7344	0.75	0.7422 (+ve)
8.	0.7344	0.7422	0.7383 (-Ve)
9.	0.7353	0.7422	0.7403(tve)
10.	0.7323	0.7403	6.7393 (+vc)
11.	0.7383	0.7393	0.7358 (-ve)
12	8886.0	0.7393	0.7391(+ve)
13	0.7358	0.7391	0.739 (-ve)
lų.	0.739	0.7391	0.7391(+ve)
15.	0.739	0.7391	0.7391 (tve)
Date 819118 Themse		15 =0.7391	
1 Pool	eve method	and the state of	2011 1800 ×3×-1=1
I find the approximate root of the equation $x^2x-1=0$ by using iterative method.			
Solul Given			
$f(x) = x^3 x - 1$			
7:	20, flo) = 0-	0-1 =-1 - Ve	
$\chi_{=1}$, $f(1) = 1-1-1 = -1 -ve$			
x=3, $f(z) = 8-2-1=5$ +ve			
i. The root less between 1 and 2			
$x_0 = \frac{1+2}{2} = 1.5$			
$\chi^3 - \chi - 1 = 0 \Rightarrow \chi^3 = 1 + \chi$			
La La I	dera -	2 = 3/1+x = d	(x)
Ву	iterative met	hod.	e e
$\gamma_1 = 3\sqrt{1+\chi_0}$, $\chi_0 = 1.5$			
1 7 1 7	x, = 3/1+1.5		

$$x_1 = 3\sqrt{2.5}$$
 $x_1 = 1.3572$
 $x_2 = 3\sqrt{1+2}$
 $x_3 = 3\sqrt{1+2}$
 $x_4 = 1.3309$
 $x_3 = 3\sqrt{1+2}$
 $x_4 = 3\sqrt{1+3309}$
 $x_5 = 3\sqrt{1+3309}$
 $x_6 = 3\sqrt{1+329}$
 $x_7 = 1.3259$
 $x_8 = 1.329$
 $x_8 = 3\sqrt{1+2}$
 $x_8 = 3\sqrt{1+2}$

$$x_{1} = 1.32 u 7$$

$$x_{2} = x_{1} = 1.32 u 7$$

$$x_{3} = x_{1} = 1.32 u 7$$

$$x_{4} = x_{1} = 1.32 u 7$$

$$x_{5} = x_{1} = x_{1} = 1.32 u 7$$

$$x_{5} = x_{1} = x_{2} = x_{1} + 1 = 1.42 u 7$$

$$x_{5} = x_{1} = x_{1} = 1.42 u 7$$

$$x_{5} = x_{1} = x_{1} = 1.42 u 7$$

$$x_{5} = x_{1} = x_{1} = 1.42 u 7$$

$$x_{5} = x_{1} = x_{1} = x_{1} = 1.42 u 7$$

$$x_{5} = x_{1} = x_{$$

X2 = 2.1748

$$73 = 3\sqrt{572-1}$$

$$= 3\sqrt{5(3.1700)-1}$$

$$= 3\sqrt{10.874-1}$$

$$= 3\sqrt{9.874}$$

$$73 = 2.1453$$

$$74 = 3\sqrt{523-1}$$

$$= 3\sqrt{52.1053}-1$$

$$= 3\sqrt{10.7265-1}$$

$$= 3\sqrt{9.7265}$$

$$74 = 2.1346$$

$$75 = 3\sqrt{52.1346}-1$$

$$= 3\sqrt{10.673}-1$$

$$= 3\sqrt{5.673}$$

$$76 = 3\sqrt{5.75-1}$$

$$= 3\sqrt{5.6535}$$

$$76 = 3\sqrt{5.5535}$$

$$76 = 3\sqrt{5.5535}$$

$$76 = 3\sqrt{5.5535}$$

$$76 = 3\sqrt{5.5535}$$

$$76 = 3\sqrt{5.6535}$$

$$77 = 3\sqrt{5.6535}$$

$$78 = 3\sqrt{5.653$$

$$78 = 3(574 - 1)$$
 $= 3\sqrt{5(2.1287)} - 1$
 $= 3\sqrt{9.6035}$
 $78 = 2.1885$
 $79 = 3\sqrt{5x_8 - 1}$
 $= 3\sqrt{9.6025}$
 $79 = 3\sqrt{5x_8 - 1}$
 $= 3\sqrt{9.6025}$
 $79 = 3.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 $79 = 9.1284$
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284
 9.1284

$$7_{1} = \frac{1 + \cos x_{0}}{3}$$

$$7_{1} = \frac{1 + \cos x_{0}}{3}$$

$$7_{1} = \frac{1 + \cos x_{0}}{3}$$

$$7_{2} = \frac{1 + \cos x_{0}}{3}$$

$$= \frac{1 + \cos x_{0}}{3}$$

$$= \frac{1 + \cos x_{0}}{3}$$

$$7_{3} = \frac{1 + \cos x_{0}}{3}$$

$$= \frac{1 + \cos x_{0}}{3}$$

$$76 = \frac{1}{1175} = \frac{1}{116.7550} = \frac{1}{1.7550} = 0.755$$
Print a root year 3.8 for the equation $2x - \log x = 7$
Correct to 4 december places. by the iterative method

$$7(x) = 2x - \log x - 7$$

$$2x - \log x = 7$$

$$2x - \log x + 7$$

$$x = 1/(\log x) + 7$$

$$x = 1/(\log x) + 7$$

$$x = 1/(\log x) + 7$$

$$x_1 = \frac{1}{2} [\log x + 7]$$

$$x_1 = \frac{1}{2} [\log x + 7]$$

$$x_2 = \frac{1}{2} [\log x + 7]$$

$$x_3 = 3.7899$$

$$x_2 = \frac{1}{2} [\log x + 7]$$

$$= \frac{1}{2} [\log x + 7]$$

$$=$$

6. Fand the approxymate root of the cauatron tonz=x by using sterative method

$$f(x) = tanx - x$$
 $x = 0$, $f(0) = tan0 - 0 = 0$
 $x = 1$, $f(1) = tan1 - 1 = 0.557407724$ tve

 $x = 1$, $f(1) = tan1 - 1 = 0.557407724$ tve

 $x = 1$, $f(1) = tan2 - 2 = -4.185039$ -ve

The root less between $1 \land 2$
 $x_0 = \frac{1+2}{2} = \frac{3}{2} = 1.5$
 $tan \cdot x = x = \frac{1}{2}(2)$
 $[x_1 = tan x_0 = tan(1.5) = tan^{-1}(x)]$
 $= 14.10141945$
 $= 14.1014945$
 $= tan^{-1}(x_0)$
 $= tan^{-1}(x_1)$
 $= tan^{-1}(x_1)$
 $= tan^{-1}(x_1)$
 $= tan^{-1}(x_2)$
 $= tan^{-1}(x_2)$
 $= tan^{-1}(x_2)$
 $= tan^{-1}(x_3)$
 $= tan^{-1}(x_3)$

$$2s = ton^{-1}(xu)$$
 $= ton^{-1}(0.5837)$
 $= 0.5283u7979$
 $2s = 0.5283$
 $2s = ton^{-1}(xs)$
 $= ton^{-1}(0.5283)$
 $= 0.08603005y$
 $2s = ton^{-1}(x6)$
 $= ton^{-1}(0.0860)$
 $= 0.032385012$
 $2s = ton^{-1}(xy)$
 $= ton^{-1}(0.0524)$
 $= ton^{-1}(0.0524)$

$$x_{19} = tan^{-1}(x_{18})$$
 $= tan^{-1}(0.9872)$
 $= 0.2797$
 $x_{19} = 0.2797$
 $x_{20} = tan^{-1}(x_{14})$
 $= tan^{-1}(0.2797)$
 $= 0.2727$
 $x_{21} = tan^{-1}(x_{20})$
 $= tan^{-1}(0.2727)$
 $= 0.2662$
 $x_{22} = tan^{-1}(x_{21})$
 $= tan^{-1}(0.2668)$
 $x_{22} = tan^{-1}(x_{21})$
 $= tan^{-1}(0.2668)$
 $x_{23} = tan^{-1}(0.2668)$
 $= 0.2602$
 $x_{23} = tan^{-1}(0.2602)$
 $= tan^{-1}(0.2602)$
 $= tan^{-1}(0.2602)$
 $= tan^{-1}(0.2602)$
 $= tan^{-1}(0.2602)$
 $= tan^{-1}(0.2602)$
 $= 0.2546$
 $x_{23} = tan^{-1}(x_{23})$
 $= tan^{-1}(x_{23})$

725 = 0.2443	242= ton'(241)
226 = tan'(x25)	2 ton' (0.1911)
= ton' (0.2443) = 0.239606804	242 = 6.1888
	743 = ton' (xu2)
226 = 0.2396	= tan' (0.1888)
$x_{27} = \tan^{-1}(x_{26})$	743 = 0.1866
= tañ' (10:2396)	xuu= tan'(xu3)
227 = 0.2352	= ton' (0.1866)
228 = tan' (227)	
= tari(0.2352)	xuy = 0.1845
X28 = 0.231	Xus = ton' (xuu)
229= tan' (228)	= tan (Lo. 1845)
2 tan' (0.231)	- Xus = 0.1824
X29 = 0.2270	xub = tan'(xus)
230 2 tan' (229)	= ton' (0.1824)
= tan (0.2270)	Tul = 0.1804
×30 = 0.2232	Xu7 = ton (1746)
231= ton (230)	= tan (0.180u)
= tan' (0.2232)	X47 = 0.1785
×31 = 0.2196	xus = tor(xuz)
$x_{32} = x_{00}(x_{31})$	= ton' (0.1785)
) XU8 = 0.1766
= tan (0.2196)	xua=ton (xus)
732 = 0.2162	= ton'(0.1766)
X33 = ton (1X32)	VI = 0.1748
= tan-1(0.216	י עדע

$$734 = ton^{-1}(233)$$

$$= tan^{-1}(0.2129)$$

$$734 = 0.2098$$

$$735 = tan^{-1}(2.2098)$$

$$735 = tan^{-1}(2.2098)$$

$$735 = tan^{-1}(2.2098)$$

$$736 = ton^{-1}(2.2098)$$

$$737 = 0.2068$$

$$738 = ton^{-1}(2.2068)$$

$$739 = ton^{-1}(2.2068)$$

$$739 = ton^{-1}(2.2068)$$

$$739 = ton^{-1}(2.2037)$$

$$738 = ton^{-1}(236)$$

$$= ton^{-1}(0.2037)$$

$$739 = 0.2011$$

$$738 = ton^{-1}(236)$$

$$= ton^{-1}(0.2011)$$

$$738 = ton^{-1}(236)$$

$$= ton^{-1}(0.2011)$$

$$738 = ton^{-1}(238)$$

$$= ton^{-1}(0.1088)$$

$$739 = 0.1960$$

$$739 = 0.1960$$

$$739 = ton^{-1}(236)$$

$$739 = 0.1960$$

$$739 = ton^{-1}(396)$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 = 0.1036$$

$$739 =$$

level , and a stay on 1	267 = tan (266)
278 = ton'(257) $= ton'(0.1622)$	= ton (1507)
×18 = 0.1908	267 = 0.1496
	$x_{68} = tan'(x_{67})$
$xrd = tau_1(x28)$	= tan (0.1496)
= ton' (0.1608)	
759 = 0.1594	No = 0.1085
260 = tan (259)	2692 tan (68)
=tan'(0.159u)	=tan'(0.1085)
260 = 0.1587	769 = 0.1474
261 = ton'(x61)	x70 = tan' (x69)
= ton (0.1587)	=tan' (0 1474)
261 - 0-1568	×70 = 0.1463
262 = ton (261)	271 = tan (x70)
= ta="(0.1568)	= tan'(D.1463)
762= 0:1555	xai = 0.1U53
263 = tan (262)	172= tan' (x71)
= ton (0.1555)	= tan (0.1453)
910 = 0.15712,	272 = 0.1443
264 = tan-1 (263)	173 = tan' (9172)
= ton (0.15U3)	= tan (0.1443)
264 = 0.1531	274 = 0.1433
265 = tan (76u)	$\chi_{4} = tan'(\chi_{4})$
= tan' (0.1531)	= tan' (a.1433)
	294 = 0.1423
X65 = 0.1519	X26 = tax, (20.1
1 4	= 10n 1 n.111221
9	7775 = 0.1414
Not 2 0.1507	,

1

776 = tan 1276)	785 = ton-1 (x84)
> ton (olivia)	= (01) (0.1337)
776 = 0.1405	7185 = 0.1329
176 177 = ton (1776)	x86 = ton-1(x88)
=tan lo.1408)	= ton' (0.1329)
= 0.1396	286 = 0:1321
778 = tor (777)	287 = tan'(286)
= tan-1 (0.1396)	= ton (0.132v)
278 = D. 1387	X87 = 0.1313
x79= ton' (x78)	288 = tan-1 (287)
=ton (0.1387)	= tan-1(0.1313)
279 = 0.1378	X88 = 0.1306
	X89 = ton- (X88)
$\chi_{80} = \tan^{-1}(\chi_{79})$	= tan'(0-1306)
2 tan (0.1378)	789 = 0.1299
×80 = 0.1369	190 = ton'(189)
281 = ton-1 (280)	= tan'(0-1399)
=tan-10.1369)	190 = 0.1292
X81 = 0.1361	$\chi_{q_1} = ton'(\chi_{q_0})$
X82 = ton (X81)	
= ton'(0.1361)	- 1417 (0.070)
782 = 0.1353	291 = 0.1285
783 = ton (182)	x92 = tan'(x41)
= ton (0.1353)	= tan (0.1285)
283 = 0.1345	793 = 0.1278
284 = ton-1(783)	293 = tan (92)
= tan-(0.13us)	= tan-1 (0.1278)
2 0.1337	X93. = 0.1271.

letter of the

(eteral hot.

(carling - ju

(JELO) mot a

Date 1 Solutions of Algebraic Transcendental Equations. Since the given Equation having trignometric functions or logarithmic functions or exponent functions, that type of Equations are called transcendental Equations Ex: 3. x= s9nx+1 1. $\chi = e^{-\chi}$ 2. x+1= logx In the given linear Equation having it is called algebraic Equation. Ex: 1. 22+2+1 =0 => Newton - Rathson Method (or) Newton's Method. $2 \cdot x^{3} 2x^{2} + x + 1 = 0$ Consider f(x) =0 be the given curve and x takes the values 20, x, x2--- xn, and h 95 the common difference then $x_i = x_0 + h \rightarrow 0$ By taylor's Serves f(x+h) = f(x) +h.f'(x) + h f'(x) + h3 f''(x) + h3 f''(x)+. --. Since he's very small quantity and his his, -- are very small [negligible] .. In the above Equation we diminate the product of hi, h^3 , h^4 , --- terms. then f(x+h) = f(x)+hf'(x)of x= x, 95 the solution of the given Equation flxi)=0 => f(xoth) = 0 \Rightarrow $f(x_0+h) = f(x_0) + hf'(x_0)$ =) h-f'(x0) = -f(x0) then $h = -\frac{f(x_0)}{f'(x_0)} \longrightarrow 2$

From
$$OAO$$
 $x_1 = x_0 + \left[\frac{-f(x_0)}{F'(x_0)} \right]$
 $x_1 = x_0 - \frac{f(x_0)}{F'(x_0)}$
 $x_2 = x_1 - \frac{f(x_1)}{F'(x_0)}$
 $x_3 = x_2 - \frac{f(x_1)}{F'(x_2)}$

The obove Equation is called "Newton's Formulae".

The obove Equation is called "Newton's Formulae".

The obove Equation of Newton's Formulae.

Geometrical Representation of Newton's Formulae.

Gonsider the curve $y = f(x)$ be possing through the points (x_0, y_0) , (x_1, y_1) .

The slope of the curve $m = \frac{dy}{dx} = f'(x)$

It possing.

At (x_0, y_0) , (x_1, y_1) .

The given Ising (x_0, y_0) and slope the given Ising (x_0, y_0) and slope the given Ising (x_0, y_0) and slope (x_0, y_0) then Equation to the line (x_0, y_0) and (x_0, y_0) and slope (x_0, y_0) then Equation to the line (x_0, y_0) and $(x_0,$

Symplorly
$$\chi_2 = \chi_1 - \frac{f(\chi_1)}{f(\chi_1)}$$
; $\chi_3 = \chi_2 - \frac{f(\chi_2)}{f(\chi_2)}$

$$\therefore \chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f(\chi_n)}$$

1. Using Newtons Rothson method, find the real root of the situation 3x = cosx+1 correct to four decimal places

Solu

$$f(x) = 3x - (osx - i)$$

$$f(x) = 3x - (osx - i)$$

$$x = 0 =) f(0) = 3(0) - (os0 - 1)$$

$$= 0 - 1 - 1 = -2 - ve$$

$$x = 1 =) f(1) = 3(1) - cos1 - 1$$

$$= 3 - 0.9998 - 1. + ve$$

$$70 = \frac{0+b}{2} = \frac{0+1}{2} = 0.5$$

$$f(x) = \frac{d}{dx} \left(3x - (osx - 1) \right)$$

$$= 3 - (-s^2nx)$$

$$= 3 + s^2nx$$
By Newton's Method
$$x_1 = \frac{x_0 - f(x_0)}{f'(x_0)}$$

$$= \frac{x_0 - (3x_0 - (osx_0 - 1))}{3+s^2nx_0}$$

$$= \frac{x_0(3+s^2nx_0) - (3x_0 - cosx_0 - 1)}{3+s^2nx_0}$$

$$= \frac{3x_0 + x_0^2nx_0}{3+s^2nx_0}$$

$$= \frac{3x_0 + x_0^2nx_0}{3+s^2nx_0}$$

$$= \frac{3x_0 + x_0^2nx_0}{3+s^2nx_0}$$

$$\begin{array}{c} \chi_1 = \chi_0 s n \chi_0 + (\omega \gamma_0 + 1) \\ 3 + s n \chi_0 \\ \chi_1 = \delta.5 \, s^3 n (\delta.5) + (\delta.5) + (\delta.5) + 1 \\ 3 + s n (\delta.5) \\ - \frac{2 \cdot 11729533}{3 \cdot 4794255386} \\ = 0 \cdot 6085186498 \\ \chi_2 = \chi_1 s^2 n \chi_1 + (\delta.5) + (\delta.5) \\ \chi_2 = \chi_1 s^2 n \chi_1 + (\delta.5) + (\delta.5) \\ = \frac{(0 \cdot 6085) s^3 n (\delta.6085) + (\delta.608$$

The approximate root of the given equation is 0.6071

find the real yout of the equation x=e by using 2. Newton flathson method

$$x_1 = x_0 - \beta$$

 $x = 0 \Rightarrow \beta(x) = 0 - e^{-0} = -1$ -ve
 $x = 1 \Rightarrow \beta(1) = 1 - e^{-1} = 0.6321$ +ve
 $x_0 = \frac{0+b}{2} = 0+1 = 0.5$
 $\beta(x) = x - e^{-x}$

$$f'(x) = \frac{d}{dx} [x - c^{-x}]$$

$$= 1 - c^{-x}(-1)$$

By Newton's method

$$\chi_{1} = \chi_{0} - \frac{f(\chi_{0})}{f'(\chi_{0})}$$

$$= \chi_{0} - \frac{(\chi_{0} - e^{-\chi_{0}})}{1 + e^{-\chi_{0}}}$$

$$= \chi_{0}(1 + e^{-\chi_{0}}) - (\chi_{0} - e^{-\chi_{0}})$$

$$= \chi_{0}(1 + e^{-\chi_{0}}) - (\chi_{0} - e^{-\chi_{0}})$$

$$= \chi_{0}(1 + e^{-\chi_{0}})$$

$$= \chi_{0} + \chi_{0}e^{-\chi_{0}} - \chi_{0} + e^{-\chi_{0}}$$

$$= \frac{e^{-\chi_{0}}(\chi_{0} + i)}{1 + e^{-\chi_{0}}}$$

$$= \chi_{0} = \frac{e^{-\chi_{0}}(\chi_{0} + i)}{1 + e^{-\chi_{0}}}$$

$$= \chi_{0} = \frac{e^{-\chi_{0}}(\chi_{0} + i)}{1 + e^{-\chi_{0}}}$$

$$\frac{e^{-0.5}(0.5+1)}{1+e^{-0.5}}$$

$$= 0.606530659(1.5)$$

$$1+0.606530659$$

$$= \underbrace{0.909795988}_{1.606530659}$$

$$= 0.5663[1003]$$

$$\chi_{1} = 0.5663$$

$$\chi_{2} = e^{-\chi_{1}} [\chi_{1}+1)$$

$$= e^{-\chi_{2}} [\chi_{1}+1]$$

$$= \frac{e^{-\chi_{3}} [\chi_{1}+1]}{1+e^{-\chi_{1}}}$$

$$= \underbrace{0.5663}_{1.5676217586} [0.5663+1]$$

$$= \underbrace{0.567621759}_{1.567621759}$$

$$= 0.5671$$

$$\chi_{3} = \underbrace{e^{-\chi_{2}} (\chi_{2}+1)}_{1+e^{-\chi_{2}}}$$

$$= \underbrace{e^{-0.5671} [0.5671+1]}_{1+0.5671678029}$$

$$= \underbrace{0.5671678029}_{1.5671678029} [0.5671]$$

$$= \underbrace{0.5671678039}_{1.5671678029}$$

$$= 0.66710329$$

$$= 0.5671$$

$$\chi_{2} = \chi_{3} = 0.5671$$
The opproximate roots of the given equation 0.5671

3.75 - Q. W1881/143

PSUI SE FIR

find the approximate voot of the Equation 23-52+3=0 by 16/8/18 using Newtons method. Solul Green 23-5x+3=0 $f(x) = \chi^3 - 5\chi + 3$ $\chi = 0 \Rightarrow 0 - 5(0) + 3 = 3 + 1$ X=1 =) 9-5(1)+3=-1 -Ve $\chi=2 = 2^3 - 5(2) + 3 = 8 - 10 + 3 = 1$ + Ve $x_0 = \frac{a+b}{2} = \frac{1+2}{2} = \frac{3}{2} = 1.5$; a = 1, b = 2vool lies between 1 and 2 F(x)= x35x+31102000 f(x) = 3x25 Parish By Newton's method $\chi_i = \chi_0 - \frac{f(\chi_0)}{f(\chi_0)}$ $= \chi_0 - [\chi_0^3 - 5\chi_0 + 3]$ $= \chi_0 (3\chi_0^2 - 5) - (\chi_0^3 - 5\chi_0 + 3)$ 32,2-5 $= 3\chi_0^3 - 5\chi_0^3 - \chi_0^3 + 5\chi_0^3 - 3$ 3x025 $\chi_{1} = \frac{2\chi_{0}^{3} - 3}{3\chi_{0}^{2} - 5} \qquad \chi_{0} = 1.5$ $\chi_{1} = \frac{2(1.5)^{3} - 3}{3(1.5)^{2} - 5} = \frac{2(3.375) - 3}{3(2.25) - 5} = \frac{6.75 - 3}{6.75 - 5}$ $=\frac{3.75}{1.75}=2.142857143$ 7, = 2.1429

$$2_{2} = \frac{2x_{1}^{3} - 3}{3x_{1}^{2} - 5}$$

$$y_{1} = \frac{2(2 \cdot 1 u 2 q)^{3} - 3}{3(2 \cdot 1 u 2 q)^{2} - 5} = \frac{2(q \cdot 8 u 0 2 u 0 5 3 7) - 3}{3(u \cdot 5 q 2 0 2 0 u 1) - 5}$$

$$= \frac{19 \cdot (80 u 8 10 7 - 3)}{13 \cdot 77606123 - 5} = \frac{16 \cdot 680 u 8 107}{8 \cdot 77606123}$$

$$= 1.90079659$$

$$y_{2} = 1.9007$$

$$y_{3} = \frac{2y_{2}^{3} - 3}{3y_{2}^{2} - 5} = \frac{2(6.866583793) - 3}{3(1.9007)^{2} - 5}$$

$$= \frac{2(1.9007)^{3} - 3}{3(1.9007)^{2} - 5} = \frac{2(6.866583793) - 3}{3(3.61266049) - 5}$$

$$= \frac{13 \cdot 73316759 - 3}{10 \cdot 837981u7 - 5} = \frac{10 \cdot 73316759}{5 \cdot 837981u7}$$

$$= 1.8385$$

$$y_{4} = \frac{2y_{3}^{2} - 3}{3y_{3}^{2} - 5}$$

$$= \frac{2(1.8385)^{2} - 3}{3(1.8385)^{2} - 5} = \frac{2(6.21u 2 81217) - 3}{3(3.38068225) - 5}$$

$$= \frac{12 \cdot u 2 8562 u 3 - 3}{10 \cdot 1 u 0 2 u 6 7 5} = \frac{9 \cdot u 2 8562 u 33}{5 \cdot 1 u 0 2 u 6 7 5}$$

$$= 1.83 u 262613$$

$$y_{4} = \frac{1.83 u 3}{3x_{4}^{2} - 5} = \frac{2(1.83u 3)^{3} - 3}{3(1.8383)^{2} - 5}$$

$$= \frac{2(6.171789u) - 3}{3(3.36u656u4) - 5} = \frac{12 \cdot 3 v 35.788 - 3}{10 \cdot 0.93969 u 7 - 5}$$

$$= 9.4265$$

$$= 9.3435788$$

$$5.09396947$$

$$= 1.834243188$$

$$= 1.8342$$

$$76 = \frac{2\pi 5^3 - 3}{375^2 - 5}$$

$$= \frac{2(1.8342)^2 - 3}{3(1.8342)^2 - 5}$$

$$= \frac{2(6.170780058) - 3}{3(3.3.6428964) - 5}$$

$$= \frac{12.34156012 - 3}{10.09286892 - 5}$$

$$= 9.341560116$$

$$5.09286892$$

$$= 1.834243181$$

$$= 1.8342$$

The approximate roots x5=76=1.8342 4. find the real root of the equation x3-2x-5=0 by using Newton's method. Given Equation

solu

Fiven equation
$$\chi^{3}-2\chi-5=0$$

$$f(\chi)=\chi^{3}-2\chi-5$$

$$\chi=0 \Rightarrow 0 - 2(0)-5=-5 - \sqrt{e}$$

$$\chi=1 \Rightarrow 1-2(1)-5=-6 - \sqrt{e}$$

$$\chi=2 \Rightarrow 2^{3}-2(2)-5=8-4-5=-1 - \sqrt{e}$$

$$\chi=3 \Rightarrow 3^{3}-2(3)-5=27-6-5=16 + \sqrt{e}$$

$$\chi_{0}=\frac{0+b}{2}=\frac{2+3}{2}=\frac{5}{2}=2.5$$

$$f(\chi)=\chi^{3}-2\chi-5$$

$$f(\chi)=3\chi^{2}-2$$

$$7_{1} = 7_{0} - \frac{f(7_{0})}{f(7_{0})}$$

$$= 7_{0} - \frac{[7_{0}^{3} - 27_{0} - 5]}{(37_{0}^{2} - 2)}$$

$$= \frac{7_{0} (37_{0}^{2} - 2) - [7_{0}^{3} - 27_{0} - 5]}{37_{0}^{2} - 2}$$

$$= \frac{37_{0}^{3} - 27_{0} - 7_{0}^{3} + 27_{0} + 5}{37_{0}^{2} - 2}$$

$$7_{1} = \frac{27_{0}^{3} + 5}{3(2 \cdot 5)^{2} - 2}$$

$$= \frac{2(15 \cdot 625) + 5}{3(6 \cdot 75)} = \frac{31 \cdot 25 + 5}{18 \cdot 75 - 2}$$

$$= \frac{36 \cdot 25}{16 \cdot 75} = 2 \cdot 16417 9109$$

$$7_{1} = \frac{27_{1}^{3} + 5}{37_{1}^{2} - 2} = \frac{2(2 \cdot 1642)^{3} + 5}{3(2 \cdot 1642)^{2} - 2}$$

$$= \frac{2(10 \cdot 13659694) + 5}{3(4 \cdot 68376184) - 2}$$

$$= \frac{20 \cdot 27319388 + 5}{14 \cdot 05128492}$$

$$= \frac{2 \cdot 077136865}{2 \cdot 0971}$$

$$73 = \frac{272^3 + 5}{372^2 - 2}$$

$$= 2(2.0971)^3 + 5$$

$$3(2.0971)^2 - 2$$

$$= 2(9.22268595) + 5$$

$$3(4.39782841) - 2$$

$$= \frac{18 \cdot 44837192 + 5}{13 \cdot 19348523 - 2}$$

$$= \frac{23 \cdot 448523}{11 \cdot 19348523}$$

$$= 2 \cdot 0946$$

$$74 = \frac{273^3 + 5}{373^2 - 2}$$

$$= \frac{2(2.0946)^3 + 5}{3(2.0946)^2 - 2}$$

$$= \frac{2(9.189741551) + 5}{3(4.38734916) - 2}$$

$$= \frac{18 \cdot 3794831}{11 \cdot 16204748}$$

$$= \frac{23 \cdot 3774831}{11 \cdot 16204748}$$

$$= \frac{2.094551483}{11 \cdot 16204748}$$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are $x_3 = x_4 = 2.0946$
The approximate vooks are

 $x_0 = 5$ $k_1(x) = nx_3$

H.W

Solu

$$7_{1} = 7_{0} - \frac{f(r_{0})}{f(r_{0})}$$

$$= x_{0} - (x_{0}^{4} - x_{0} - 10)$$

$$= x_{0}(ur_{0}^{3} - 1) - (r_{0}^{4} - x_{0} - 10)$$

$$= x_{0}(ur_{0}^{3} - 1) - (r_{0}^{4} - x_{0} - 10)$$

$$= ur_{0}^{3} - r_{0}^{4} + r_{0} + r_{0}^{4}$$

$$= ur_{0}^{4} - r_{0}^{4} + r_{0} + r_{0}^{4}$$

$$= \frac{3r_{0}^{4} + r_{0}}{ur_{0}^{3} - 1} \quad r_{0} = 2$$

$$7_{1} = \frac{3(r_{0}^{4} + r_{0})}{u(r_{0}^{3} - 1)} = \frac{3(16) + r_{0}}{u(r_{0}^{3} - 1)} = \frac{58}{31}$$

$$= 1.870.9677 u_{2}$$

$$x_{1} = 1.879$$

$$= \frac{3r_{1} + r_{0}}{ur_{1}^{2} - 1} = \frac{3(1.871)^{4} + r_{0}}{u(r_{0}^{3} + r_{0}^{2} - 1)^{3} - 1}$$

$$= \frac{3(12.25uur_{0}^{3} + r_{0}^{2} - 1)}{u(r_{0}^{3} - 1)^{4} + r_{0}^{2}}$$

$$= \frac{3(1.8579 + r_{0}^{3} - 1)}{26.1987 + 9724 - 1}$$

$$= \frac{46.763u6223}{25.1987 + 7724}$$

$$= 1.855 + 78152$$

$$x_{2} = \frac{3r_{2}^{4} + r_{0}}{ur_{2}^{3} - 1} = \frac{3(1.8558)^{4} + r_{0}^{3}}{u(r_{0}^{3} + r_{0}^{3} - 1)}$$

$$= \frac{3(1.86109219) + r_{0}}{u(r_{0}^{3} + r_{0}^{3} - 1)} = \frac{35.565u5359 - r_{0}^{3}}{25.565u5359 - r_{0}^{3}}$$

=
$$\frac{45.58327658}{24.56545359}$$

= 1.855584568
 $3 = 1.8556$
 $3 = 1.8556$
 $3 = \frac{3(1.8556)^{4}+10}{4(6.389297224)-1}$
= $\frac{3(11.85597993)+10}{4(6.389297224)-1}$
= $\frac{35.56793978+10}{25.55718889}$
= 1.8556
The approximate toots are $3 = 24 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote Logarithm functions 1718188 Augustion $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Put $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate toots are $3 = 24 = 1.8556$
Dote $3 = 1.8556$
The approximate $3 = 1.8556$
The approximate $3 = 1.8556$
 $3 = 1.8556$
The approximate $3 = 1.8556$
The a

The rouls are 2018 8

$$x_0 = \frac{Q+b}{2} = \frac{2+3}{2} = \frac{5}{2} = 2.5$$
 $f(x) = x \log_{10}^{x} - 1.2$
 $f(x) = x \cdot \frac{\log x}{\log_{10}} - 1.2$
 $f(x) = \frac{x \log x - 1.2 \log 10}{\log 10}$
 $f'(x) = \frac{1+\log 9x}{\log 10}$

By Newton's method

 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
 $\frac{1+\log 70}{\log 40}$
 $\frac{1+\log 70}{\log 70}$
 $\frac{1+\log 70}{\log 70}$

$$\begin{array}{llll} & = 2.646751634 \\ & \chi_1 = 2.6468 \\ & \chi_2 = \frac{\chi_1 + 1.2 \log 10}{1 + \log \chi_1} \\ & = \frac{5.263 \log 2112}{1.916296731} \\ & = \frac{2.6068 + 1.2}{1 + \log (3.6062)} \\ & = \frac{3.8069}{1 + 0.02272 \log 2} \\ & = \frac{3.9638}{1 + \log 27} \\ & = \frac{2.7038}{1 + \log 27} \\ & = \frac{2.7038}{1 + \log 27} \\ & = \frac{2.7038 + 1.2}{1 + \log 2} \\ & = \frac{2.70038 + 1.2}{1 + \log 2} \\ & = \frac{2.70038 + 1.2}{1 + \log 2} \\ & = \frac{2.70038 + 1.2}{1 + \log 2} \\ & = \frac{2.70038 + 1.2}{1 + \log 2} \\ & = \frac{2.70038 + 1.2}{1 + \log 2} \\ & = \frac{3.9038}{1 + 0.031970563} \\ & = \frac{3.9038}{1 + 0.031970563} \\ & = \frac{5.503802112}{2.008213362} \\ & = \frac{2.7003213362}{2.74007} \\ & = \frac{2.74007}{1 + \log 213362} \\ & = \frac{2.74007}{1 + \log 21362} \\ & = \frac{2.74007}{1 + \log 2136$$

$$F(1) = 211) - \log_{10} - 7 - \sqrt{2}$$

$$= 2 - 0 - 7$$

$$= -5$$

$$F(2) = 2(2) - \log_{10} - 7 - \sqrt{2}$$

$$= 4 - 0 \cdot 3010 - 7$$

$$= -3 \cdot 301$$

$$F(3) = 2(3) - \log_{10}^{3} - 7 - \sqrt{2}$$

$$= 6 - 0 \cdot 477121 - 7$$

$$= -1 \cdot 4771$$

$$F(4) = 2(4) - \log_{10}^{3} - 7 + \sqrt{2}$$

$$= 8 - 0 \cdot 60205 - 7$$

$$= 0 \cdot 39795$$

$$20 - \frac{0+b}{2} = \frac{3+4}{2} = \frac{7}{2} = 3.5$$

$$F(2) = 2x - \log_{10}^{3} - 7$$

$$= 2x \log_{10}^{3} - 7$$

$$= 2x$$

Flx) =
$$\frac{9 \times \log 10^{-1}}{1 \log 10}$$

By Newton's Iterative method

 $7_1 = 7_0 - \frac{6}{100}$
 $= 7_0 - \frac{6}{100} - \frac{6}{100} - \frac{6}{100} - \frac{6}{100} - \frac{6}{100}$
 $= 7_0 - \frac{2 \times \log \log 10 - \log 7_0 - 7 \log 10}{100} - \frac{2 \times \log 10 - 1}{100}$
 $= \frac{20 \cdot \log 10 - 1}{100} - \frac{2 \times \log 10 - 1}{100} - \frac{20 \cdot \log 7_0 - 7 \log 7_0}{100} - \frac{20 \cdot \log 7_0}{100} - \frac{20$

```
22 = 21, [-17 (09x, +7(0910)
             27,10910-1
= 3.7900[-1+109(3.7900) +.16.11809565)
              2 (3.7900) 20910 -1
          3-7900[-1+1.332366019+16.11809565]
               213-7900)(2.302585093)-1
        = (16.US.OU6167) 3.7900
17.7453595-1
          = 62.34724973. [14.4] -14-4
16.453595
= 3.789278284
        x, = 3.7893
        23 = 22[-1+ logn, +7 logio]
                2×2 log10-1
          = (3.7893)[-1+log(3.7893)+16.118095.65]
                 2(3.7893)(2.302585093)-1
           = 3.7893[-1+4.332(81305)+16.11809565)
             17.45037139-1
      = 3.7893(16.45027696)
16.45037139
            = 62:33503447
   (18) 18 4 18 18 16 105037139
              = 3.789378247
      The approximate value x_2 = x_3 = 3.7893.
```

2= x1 f(x1) - x1 f(x1)

Rote Regula - Fals: Method (or) False position Method. y=f(x) be the given curve and the given curve Consider Passing through A(x,,y,) A B(x2,y2) then y,= f(x,) & y,= p(x2) Then the Equation to the curve is $y-y_1 = m(x-x_1)$ where $m = \frac{y_2-y_1}{y_1-x_2}$ $y-y_1 = \left(\frac{y_2-y_1}{y_1-y_1}\right) (x-x_1)$ Since the oney, = given curve intersect of x-ones so y=0 $\frac{1}{2} \cdot \frac{y_2 - y_1}{y_2 - y_1} \left[(x - y_1) \right]$ $\chi - \chi_1 = -y_1 \left(\chi_2 - \chi_1 \right) - \frac{y_2 - y_1}{y_2 - y_1}$ $(2) 2 (3) (3) + (x = x, -(x_2 - x_1)y_1)$ $x = x_i - \left[\frac{x_2 - x_i}{f(x_2) - f(x_i)}\right] f(x_i)$ = χ , $(f(\chi_2) - f(\chi_1)) - (\chi_2 - \chi_1) f(\chi_1)$ flxz)-flxi) = x, f(x2)-x, f(x1)-x2f(x1)+xf(x1) flx2)-flx1) $\chi = \frac{\chi_1 f(\chi_2) - \chi_2 f(\chi_1)}{f(\chi_2) - f(\chi_1)}$.. If x = x3 $x_3 = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)}$

Similarly
$$v_0 = \frac{v_2 f(x_3) - v_3 f(x_4)}{f(x_3) - f(x_4)}$$
 $v_1 = \frac{v_3 f(x_4) - v_4 f(x_3)}{f(x_4) - f(x_3)}$

Sole

Sole

 $v_2 = \frac{v_3 f(x_4) - v_4 f(x_3)}{f(x_4) - f(x_3)}$

Sole

 $v_3 = \frac{v_4 f(x_4) - v_4 f(x_3)}{f(x_4) - f(x_4)}$

Sole

 $v_4 = \frac{v_4 f(x_4) - v_4 f(x_4)}{v_4 f(x_4)}$

Fig. $v_4 = \frac{v_4 f(x_4)}{v_4 f(x_4)}$
 $v_4 = \frac{v_4 f(x_4) - v_4 f(x_4)}{v_4 f(x_4)}$
 $v_5 = \frac{v_4 f(x_4) - v_4 f(x_4)}{v_4 f(x_4)}$

$$\frac{0.4628 + 1.794}{0.8294}$$

$$= \frac{2.2568}{0.8294}$$

$$= \frac{2.72603135}{2.721003135}$$

$$73 = 2.721 \log(2.721) - 1.2$$

$$= 2.721 (0.434728541) - 1.2$$

$$= 1.182896362 - 1.2$$

$$= -0.017103637$$

$$= -0.0171$$

$$74 = \frac{72}{100} \int_{-0.0171}^{100} - 2.721 (0.2314)$$

$$-0.0171 - 0.2314$$

$$= \frac{-0.0513 - 0.6296394}{-0.2485}$$

$$= \frac{-0.6809394}{-0.2485}$$

$$= 2.74002$$

$$f(74) = 2.7402$$

$$f(75) =$$

$$75 = \frac{\chi_{3}F(\chi_{4}) - \chi_{4}F(\chi_{3})}{F(\chi_{4}) - F(\chi_{3})}$$

$$= \frac{2.721 \times -0.004 - 2.7402 \times [-0.0171)}{-0.004 - [-0.0171]}$$

$$= \frac{-0.0010884 + 0.04685742}{0.0167}$$

$$= \frac{0.04576902}{0.0167}$$

$$= \frac{2.7407}{0.0167}$$

$$= \frac{2.7407}{0.0167} = \frac{2.7407}{0.0071} = \frac{1.2}{0.0004}$$

$$= \frac{2.7407}{0.000} = \frac{1.2}{0.000}$$

$$= \frac{1.2000 47012 488}{0.0001} = \frac{1.2000}{0.0004}$$

$$= \frac{2.7402 \times 0.0001 - 2.74071 - 0.00041}{0.0001}$$

$$= \frac{2.7402 \times 0.0001 - 2.74071 - 0.00041}{0.0005}$$

$$= \frac{0.00027402 + 0.00107628}{0.0005}$$

$$= \frac{0.0013703}{0.0005}$$

$$= \frac{0.0013703}{0.0005}$$

$$= \frac{2.7406 \left(0.437845653\right) - 1.2}{0.437845653} = \frac{1.19759798-1.2}{0.759798-1.2}$$

=
$$-0.0000 \cdot 4020 \cdot 231741$$
= -0.0
 $x_7 = x_6 = 2.7uol$

The rooks of the equation

 $x_7 = x_6 = 2.7uol$

2. find the real roots of the equation

 $x_{-c} - x_{-c} = 0$
 $f(x) = x_{-c} - 2$
 $x = 0.632.1$
 $x_{-c} - x_{-c} = 0$
 $f(x_1) = 1 - e^{-1} = 0.632.1205588$
= $0.632.1$
 $x_3 = x_1 f(x_2) = 0.632.1$
 $x_3 = x_1 f(x_2) - x_2 f(x_1)$
 $f(x_2) - f(x_1)$
= $0(0.632.1) - (1)[-1]$
 $0.632.1 - (-1)$

= $0 + 1$
 $0.632.1 + 1$
= $1.632.1$
= 0.6127
 $1.632.1$
 $1.632.1$
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
= 0.6127
 $1.632.1$
=

$$7y = \frac{x \cdot sf(x_3) - 73 \cdot f(x_2)}{f(x_3) - f(x_2)}$$

$$= \frac{1 \times 0.0708 - 0.6197 \times 0.6321}{0.0708 - 0.6321}$$

$$= \frac{0.0708 - 0.38728767}{-0.5613}$$

$$= \frac{-0.31648767}{-0.5639} = 0.5639$$

$$f(x_4) = 0.5639$$

$$f(x_4) = 0.5639 \frac{10}{10} (0.5639) - e^{-0.5639}$$

$$f(x_4) = 0.5639 \frac{10}{10} (0.5639) - e^{-0.5639}$$

$$f(x_4) = 0.5639 \frac{10}{10} (0.5639) - e^{-0.5639}$$

$$= 0.140297138 - 0.563985686$$

$$f(x_4) = -0.0051$$

$$x_5 = \frac{x_3 f(x_4) - x_4 f(x_3)}{f(x_4) - f(x_3)}$$

$$= \frac{0.6127 \times -0.0051 - 0.5639 \cdot 10.0708}{-0.0051 - 0.0708}$$

$$= \frac{-0.04304889}{-0.0759} = 0.564179051$$

$$= 0.5672 - 0.5672 - e^{-0.5672}$$

$$f(x_5) = 0.5672 - e^{-0.5672}$$

$$= 0.5672 - 0.567211128$$

$$= 0.5672 - 0.567211128$$

$$= 0.00018887114156$$

$$= 0.0001$$

$$x_6 = \frac{x_4 f(x_5) - x_5 f(x_4)}{f(x_5) - f(x_4)}$$

$$= 0.5639 \times 0.0001 \cdot 0.56721 \times -0.0051$$

$$= 0.00294911$$

$$0.0053$$

$$= 0.567136538$$

$$\chi_{L} = 0.5671 - C$$

$$= 0.5671 - 0.567167842$$

$$= + 0.000067842$$

$$= + 0.00067842$$

$$= + 0.0001 - 0.5671(0.5672)$$

$$0.0001 - 0.5672$$

$$= 0.5672 (0.0001) - 0.5671(0.5672)$$

$$0.0001 - 0.5672$$

$$= 0.00005672 - 0.32165912$$

$$-0.5671$$

$$= 0.5670$$

$$= 0.5671$$

$$= 0.5671$$

$$\chi_{C} = \chi_{T} = 0.5671$$
The Veol roots are $\chi_{C} = \chi_{T} = 0.5671$

$$\chi_{C} = \chi_{T} = 0.5671$$
The Veol roots are $\chi_{C} = \chi_{T} = 0.5671$

$$\chi_{C} = \chi_{T} = 0.5671$$

$$\chi_{C} = \chi_{T} = 0.5671$$
The Veol roots are $\chi_{C} = \chi_{T} = 0.5671$

$$\chi_{C} = \chi_{T} = 0.5671$$

$$\chi_$$

$$x_{1}=1, f(x_{1}) = -1$$

$$x_{2} = 3, f(x_{2}) = -1$$

$$x_{3}=x_{1}f(x_{2}) - x_{2}f(x_{1})$$

$$f(x_{2}) - f(x_{1})$$

$$= \frac{1}{1-(x_{1})} = \frac{1+2}{1+1} = \frac{3}{2} = 1.5$$

$$x_{3}=1.5$$

$$f(x_{3}) = (1.5)^{3} - 5(3.5) + 3$$

$$= 3.375 - 7.5 + 3$$

$$= -1.125$$

$$x_{4} = x_{2}f(x_{3}) - x_{3}f(x_{2})$$

$$= \frac{1}{125} - \frac{1}{125} - \frac{1}{125} - \frac{1}{125} - \frac{1}{125} - \frac{1}{125}$$

$$= \frac{-3.75}{-2.125} = 1.7647582$$

$$x_{4} = 1.76475$$

$$f(x_{4}) = (1.765)^{3} - 5(1.765) + 3$$

$$= 5.498372125 - 8.825+3$$

$$= -0.326027875$$

$$f(x_{4}) = -0.327$$

$$x_{5} = x_{3}f(x_{4}) - x_{4}f(x_{3})$$

$$= (-1.765)^{3} - (1.765)(-1.125)$$

$$= (-1.725)^{3} - (-1.125)^{3}$$

$$= \frac{-0.4965+1.985625}{0.798}$$

$$= \frac{1.495125}{0.798}$$

$$= \frac{1.873590226}{0.798}$$

$$= \frac{1.874}{1.874}$$

$$= \frac{1.874}{1.874}$$

$$= \frac{1.874}{1.874}$$

$$= \frac{1.874}{1.874}$$

$$= \frac{1.874}{1.874}$$

$$= \frac{1.1255624}{1.875}$$

$$= \frac{1.1255624}{1.875}$$

$$= \frac{1.1255624}{1.875}$$

$$= \frac{1.1255624}{1.875}$$

$$= \frac{1.1255624}{1.875}$$

$$= \frac{1.1255624}{0.811} = \frac{1.874}{1.874} (-0.327)$$

$$= \frac{0.372415+0.612798}{0.538}$$

$$= \frac{0.985213}{0.538}$$

$$= \frac{0.985213}{0.538}$$

$$= \frac{0.985213}{0.538}$$

$$= \frac{1.831250929}{1.831}$$

$$= \frac{1.831}{5} = \frac{1.83125929}{1.851}$$

$$= \frac{1.83125929}{1.831} = \frac{1.83125929}{1.831}$$

$$= \frac{1.83125929}{1.831} = \frac{1.83125929}{1.831}$$

$$= \frac{1.83125929}{1.831} = \frac{1.83125929}{1.8312} = \frac{1.8312592}{1.8312} = \frac{1.8312592}{1.8312} = \frac{1.8312592}{1.8312} =$$

$$= \frac{-0.029984 - 0.38634}{-0.227}$$

$$= \frac{-0.416325}{-0.227}$$

$$= +1.834030837$$

$$= 1.834$$

$$f(x_8) = (1.834)^3 - 5(1.834) + 3$$

$$= 6.168761704 - 9.17 + 3$$

$$= -0.001238296$$

$$= -0.001$$

$$x_8 = \frac{x_6 f(x_7) - x_7 f(x_6)}{f(x_4) - f(x_6)}$$

$$= \frac{1.8316 - 0.001 - (1.834) (1-0.016)}{-0.0016}$$

$$= \frac{-0.001836 + 0.029344}{0.015}$$

$$= \frac{0.027513}{0.015} = 1.8342 = 1.834$$
The real roots ore $x_7 = x_8 = 1.834$
The real roots of the Equation tonx + tonhx = 0

And the introval [1.6, 3]

In the introval [1.6, 3]

In the introval [1.6, 3]

In the introval [1.6, 3]

$$F(2) = ton 2 + tonh 2$$

$$= -2 \cdot 185039863 + 0.96402758$$

$$= -1.221012783$$

$$F(2.2) = ton(2.2) + tonh(2.2)$$

$$= -1.373823057 + 0.97574313$$

$$= -0.398079986$$

$$F(2.4) = ton(2.4) + tonh(2.4)$$

$$= -0.916014289 + 0.9836744857$$

$$= 0.067660568$$

$$7_1 = 2.2 \cdot f(x_1) = -0.3981$$

$$7_2 = 2.4 \cdot f(x_2) - 72 \cdot f(x_1)$$

$$f(x_2) - f(x_1)$$

$$= (2.2)(0.0677) - (2.4)(-0.3981)$$

$$0.0677 - (-0.3981)$$

$$= (2.2)(0.0677) + (2.4)(0.3981)$$

$$0.0677 + 0.3981$$

$$= 0.14894 + 0.95549 = \frac{1.10438}{0.4658}$$

$$1 = 2.37093173$$

$$7_3 = 2.37093173$$

$$7_3 = 2.37093173$$

$$7_3 = 2.37093173$$

$$7_3 = 0.971013157 + 0.982705001$$

$$= 0.01691849$$

$$= 0.0117$$

$$7_4 = 7_2 \cdot f(x_3) - 7_3 \cdot f(x_2)$$

$$= f(x_3) - f(x_2)$$

$$= (2.4)(0.0117) - 2.3709 \times 0.0697$$

$$= 0.0187 - 0.0697$$

$$= 0.02808 - 0.16050993$$

$$= -0.132u2993 = 2.36u820179$$

$$= -0.056$$

$$24 = 2.36u8 = 2.36u5$$

$$p(xu) = ton(2.36u8) + ton h(2.36u8)$$

$$= -0.982935008 + 0.982u9u568$$

$$= -0.000408003$$

$$= -0.0004$$

$$= -0.0004 - 0.0117$$

$$-0.0004 - 0.0117$$

$$-0.0004 - 0.0117$$

$$-0.002661653$$

$$x_5 = 2.365$$

$$= -0.9825u2253 + 0.982501507$$

$$= -0.9825u2253 + 0.982501507$$

$$= -0.9825u2253 + 0.982501507$$

$$= -0.9825u2253 + 0.982501507$$

$$= 0.000047674 = 0.0000$$

$$x_6 = \frac{xuf(x5) - x5f(xu)}{f(x_5) - f(x_0)}$$

$$= (8.36u8)(0.0000) - (2.365)(-0.0004)$$

$$= (8.36u8)(0.0000) - (2.365)(-0.0004)$$

$$\begin{array}{r} = \underbrace{0.00094}_{0.0004} \\ = 9.365 \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 9.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ real } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ ore } \text{ noots.} \\ x_5 = x_1 = 2.365 \text{ or$$

$$7u = x_{2}f(x_{3}) - x_{3}f(x_{1})$$

$$= (0.6)(-0.0035) - (0.5166)(0.2679)$$

$$= -0.0035 - 0.2679$$

$$= -0.0021 - 0.13839914$$

$$-0.2714$$

$$= -0.10049714$$

$$-0.2714$$

$$= 0.517475534$$

$$= 0.5177(1.678163432) - 0.868959707$$

$$= 0.868785208 - 0.868989707$$

$$= 0.868785208 - 0.868989707$$

$$= -0.0002$$

$$75 = \frac{x_{3}f(x_{4}) - x_{4}f(x_{3})}{f(x_{4}) - f(x_{3})}$$

$$= (0.5166)(-0.0002) - (0.5177)(-0.0035)$$

$$-0.0002 + 0.0035$$

$$= -0.000170863 = 0.517766666$$

$$0.0033$$

$$= 0.5178$$

$$f(x_{5}) = (0.5178) e^{0.5178} - (0.5178)$$

$$= (0.5178)(1.618331256) - 0.868910215$$

$$= 0.869039924 - 0.868910215$$

$$= 0.869039924 - 0.868910215$$

$$= 0.0001297095828$$

$$= 0.0001$$

$$76 = \frac{\chi_{1}f(x_{5}) - \chi_{5}f(x_{4})}{f(x_{5}) - f(x_{4})}$$

$$= (0.5177)(0.0001) - (0.5178)(-0.0002)$$

$$= 0.00005(177 + 0.00010356)$$

$$= 0.0003$$

$$= 0.00033$$

$$= 0.517766666$$

$$= 0.5178$$

$$6. \chi^{2}u\chi+1 \quad 7. \chi e^{\chi} = 3$$
Solul Given that
$$f(x) = \chi^{2}u\chi+1 \quad \chi e^{\chi} = 3$$
Solul Given that
$$f(x) = \chi^{2}u\chi+1 \quad \chi e^{\chi} = 3$$

$$\chi = 1, f(1) = 1 - u(1) + 1 = 1$$

$$\chi = 1, f(1) = 1 - u(1) + 1 = -2$$

$$\chi = 2, f(2) = 2^{3} - u(2) + 1$$

$$= 8 - 8 + 1 = 1$$

$$\chi_{1} = 1, f(\chi_{1}) = -2$$

$$\chi_{2} = 2, f(\chi_{2}) = \chi_{1}f(\chi_{1})$$

$$= 1(1) - 2(-2) = \frac{1 + 4}{1 + 2} = \frac{5}{3}.$$

$$= 1.666666667$$

$$\chi_{3} = 1.6667$$

$$f(\chi_{3}) = (1.6667)^{3} - u(1.6667) + 1$$

$$= u.629907u(3 - 6.6668+1)$$

$$= -1.036892587$$

= 0.03/396639 = (2008-1) = (2008

= 0.0314 = - \$1313,200.3

$$76 = \frac{\chi_{U}f(\chi_{5}) - \chi_{5}f(\chi_{U})}{f(\chi_{5}) - f(\chi_{U})}$$

$$= \frac{1.836U(0.031U) - 1.8657(-0.1526)}{0.031U + 0.1526}$$

$$= \frac{0.05766296 + 0.28U70582}{0.184}$$

$$= \frac{0.3U236878}{0.184}$$

$$= \frac{0.3U236878}{0.184}$$

$$= \frac{1.8607}{f(\chi_{6})} = \frac{(1.8607)^{3} - u(1.8607) + 1}{(1.8607)^{3} - u(1.8607)}$$

$$= \frac{6.4 u2123895 - 7.4 u22871}{(1.8607)^{3} - 0.0007}$$

$$= \frac{\chi_{5}f(\chi_{6}) - \chi_{6}f(\chi_{5})}{f(\chi_{6}) - f(\chi_{5})}$$

$$= \frac{1.8657(-0.0007) - (1.8607)(0.0314)}{-0.0007 - 0.03277}$$

$$= \frac{-0.05973197}{-0.03237}$$

$$= \frac{1.860809034}{(1.8608)^{3} - u(1.8608) + 1}$$

$$= \frac{6.4 u3162612 - 7.4 u3871}{(1.8608)^{3} - u(1.8608) + 1}$$

$$= \frac{6.4 u3162612 - 7.4 u3871}{(1.8608)^{3} - u(1.8608) + 1}$$

$$= \frac{6.4 u3162612 - 7.4 u3871}{(1.8608)^{3} - u(1.8608) + 1}$$

$$= \frac{6.4 u3162612 - 7.4 u3871}{(1.8608)^{3} - u(1.8608) + 1}$$

$$\chi_{8} = \frac{\chi_{6}f(\chi_{7}) - \chi_{7}f(\chi_{6})}{f(\chi_{7}) - f(\chi_{6})}$$

$$= \frac{1.8607 + 0.000}{-0.0007}$$

$$= 0 + 0.00130256$$

$$0.0007$$

$$\chi_{8} = 1.8608 + 0.0007$$

$$\chi_{1} = \chi_{8} = 1.8608 + 0.0007$$

$$\chi_{1} = \chi_{1} = 1.8608 + 0.0007$$

$$\chi_{2} = \chi_{1} = 1.8608 + 0.0007$$

$$\chi_{3} = \chi_{1} = 1.8608 + 0.0007$$

$$\chi_{4} = \chi_{8} = 1.8608 + 0.0007$$

$$\chi_{5} = \chi_{1} = 1.8608 + 0.0007$$

$$\chi_{1} = \chi_{1} = 1.8281828 - 3$$

$$= -0.281718171$$

$$= -0.2817$$

$$\chi_{1} = \chi_{1} = 1.8281828 - 3$$

$$= -0.281718171$$

$$= -0.2817$$

$$= 14.7781122$$

$$= 11.7781$$

$$\chi_{1} = \chi_{1} = 1.7781$$

$$\chi_{3} = \chi_{1} = 1.7781$$

$$\chi_{3} = \chi_{1} = 1.7781$$

$$\chi_{4} = \chi_{5} = 1.8608$$

$$\chi_{1} = \chi_{1} = 1.8608$$

$$\chi_{2} = \chi_{1} = 1.8608$$

$$\chi_{3} = \chi_{1} = 1.8608$$

$$\chi_{4} = \chi_{5} = 1.8608$$

$$\chi_{5} = 1.8608$$

$$\chi_{7} = 1.8608$$

$$= \frac{11.7781 + 0.5634}{12.0598}$$

$$= \frac{18.3415}{12.0598}$$

$$= 1.023358596$$

$$\chi_3 = 1.0234$$

$$f(\chi_3) = (1.0234)e^{1.0234} - 3$$

$$= (1.0234)(2.782639673) - 3$$

$$= 2.847753442 - 3$$

$$= -0.152246558$$

$$= -0.1522$$

$$\chi_4 = \frac{\chi_2 f(\chi_3) - \chi_3 f(\chi_2)}{f(\chi_3) - f(\chi_2)}$$

$$= \frac{2(-0.1522) - (1.0234)(11.7781)}{-0.1522 - 11.7781}$$

$$= -0.3644 - 18.05376954$$

$$= -12.35810954$$

$$= -11.9303$$

$$= -12.35810954$$

$$= -11.9303$$

$$= 1.0359$$

$$= 1.0359$$

$$f(\chi_4) = (1.0359) e^{1.0359} - 3$$

$$= (10359)(2.817640972) - 3$$

$$= 2.918794283 - 3$$

$$= -0.081205717$$

$$= -0.0812$$

```
75 = x3 f(x4) - x4 f(x3)
        f(74)-f(73) (87)7) x= 68
    - (1.0234)(-0.0812)- (1.0359)(-0.1522)
      -0.0812 +0.1522
     = -0.08310008+0.15766398
               0.071
     = <u>0.0745639</u> = 830 · B - 1
     = 0.0745639 1.050195775
      = 0.0746 1.0509
 f(x5) = (1.0502) e 1.0502 3 (202.0) = (=1)
      = (1.0502)(2.858222705)-3
     = 3.001705485-3218888
      = 0.001705485257 00 1 1 2 -
      = 0.0017
26 = 24 F(x5) - 25 F(x4) } = 1 = ( = x) ] = 2x
f(x_5) - f(x_4)
= 1.0359(0.0017) - (1.0501)(-0.0812)
        0.0017 +0.0812
  = 0.00176103+0.08526812
          0.0829
   = 0.08702915
      0.0829 Lagge p2 Fg. G
     1.049808806
   = 1.0498 8381289183114
f(x6) = (1.0498) e1.0498 - 3
     = (1.0498)(2.85707 9645) -31) - (20)]
      = 2.999362211-3
      = -0.0006377886908
```

$$77 = 75 f(76) - 76 f(75)$$

$$= (1.0501)(-0.0006) - (1.0498)(0.0017)$$

$$-0.0006 - 0.0017$$

$$= 0.00063006 - 0.00178466$$

$$-2.0023$$

$$= -0.0011546$$

$$-0.0023$$

$$= 0.502$$

$$f(77) = (0.502) e^{0.502} - 3$$

$$= (0.502)(1.652022013) - 3$$

$$= 0.82931505 - 3$$

$$= -2.170684949$$

$$= -2.1707$$

$$78 = 76 f(77) - 77 f(76)$$

$$f(77) - f(76)$$

$$= 1.0498(-2.1707) - (0.502)(-0.006)$$

$$-2.1707 + 0.0006$$

$$= -2.27880086 + 0.0003012$$

$$-2.1701$$

$$= -2.27849966$$

$$-2.1701$$

$$= 1.04951458$$

$$= 1.0491$$

$$= 1.0491 e^{1.0491} = 3$$

$$= (1.0491) e^{1.0491} = 3$$

$$= 2.995264836-3$$

$$= -0.004735163839$$

$$= -0.0047$$

$$79 = 2776(28) - 287(27)$$

$$= (0.502)(-0.0047) - (1.0491)(-2.1707)$$

$$= -0.0023594 + 2.27728137$$

$$= 2.27492197$$

$$= 1.0503 1.0503 - 3$$

$$= (1.0503)(2.858508542) - 3$$

$$= 3.002291522-3$$

= 0.002291821669

20.0023

1

$$710 = \frac{x_8 f(x_4) - x_9 f(x_8)}{f(x_4) - f(x_8)}$$

$$= (1 \cdot 0u_{11})(0 \cdot 0023) - (1 \cdot 0503)(-0 \cdot 0004)$$

$$= 0 \cdot 002u1293 + 0 \cdot 00u93641$$

$$0 \cdot 0007$$

$$= 0 \cdot 0073u93y$$

$$0 \cdot 007$$

$$= 1 \cdot 0u_{11}90571y$$

$$= 2 \cdot 9999147899 - 3$$

$$= 0 \cdot 000005210093563$$

$$= 0 \cdot 00000$$

$$f(x_{11}) = \frac{x_{11}}{x_{11}} - \frac{x_{11$$

 $\begin{bmatrix} y \\ y \\ z \end{bmatrix} = \begin{bmatrix} -4k \\ k \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$ We will consider the system of equations anxitaigna taigna = bi; aginitazzna tazzna = ba; 03171 ta3272 + a3373 = b3; ->0 where the dragonal co-efficients are not zero and are large comparae to other co-exiceents, such a system is called deagonally dominant system 4. Solve 10x+y+2=12; 2x+10y+2=13; 2x+2y+103=14 by Grouss- seidl iteration method is solul Greven equations = 12 7 300.0= 3 1000 100 2x+10y+2=13 - 70 018=81) = 100 lox+y+2=12 -Equation (1) is a diagonally dominent system 16x+y+2=12 2= (12-y-t)10 -> 0 17 PP. 0 - (2x thay + 2 = 13 30 PP.P. y=10 (13-27-2)->0 2x+2y+10==14 nortorate (10 00 112 mg (14 2x -34) -3 100 8666.0 - ngori - 811 7 - 1812

Put
$$y=0$$
, $z=0$ in eq. 0

 $x^{(1)} = \frac{1}{10}(12-0-0) = 1.2$

Put $x=1.2$, $z=0$ in eq. 0

 $y^{(1)} = \frac{1}{10}(13-2(1.2)-0)$
 $y^{(1)} = \frac{1}{10}(13-2(1.2)-0)$
 $y^{(1)} = 1.06$

Put $y=1.2$, $y=1.06$ in eq. 3

 $z^{(1)} = \frac{1}{10}(14-2(1.2)-2\cdot(1.06))$
 $z^{(1)} = 0.908$
 $x^{(1)} = 1.21$, $y^{(1)} = 1.06$, $z^{(1)} = 0.908$
 $x^{(1)} = \frac{1}{10}(12-1.06-0.908)$
 $y^{(1)} = \frac{1}{10}(13-2(0.9992)-0.908)$
 $y^{(1)} = \frac{1}{10}(13-2(0.9992)-0.908)$
 $z^{(2)} = \frac{1}{10}(14-2\cdot(0.7992)-2\cdot(1.0054)$
 $z^{(2)} = 0.9992$; $y=1.0060$ in eq. 3

 $z^{(2)} = 0.9992$; $y^{(2)} = 1.0060$; $z^{(2)} = 0.9992$

The ration

Put $y=1.0050$, $z=0.9992$ in eq. 3

 $z^{(3)} = \frac{1}{10}(12-1.006u-0.9992)$

$$\begin{array}{c} = 0.99955 \\ \text{put} \quad x = 0.99955; \quad z = 0.9991 \quad \text{Pn} \ \text{Pn}$$

we Vorgable	have Ist Approngmation	and GISNI S	310	4 th
7 yoz	1.06 1.06 0.948	0.9992	1.000	

#-W Solve

$$277 + 6y - 2 = 85$$
 $67 + 15y + 92 = 72$
 $3 \cdot 87, -372 + 273 = 30$
 $67 + 15y + 92 = 72$
 $7 + y + 502 = 110$
 $4 \cdot 7 + 100 + 2 = 6$
 $1007 + 9 = 7 = 85$
 $67 + 15y + 92 = 72$
 $7 + y + 102 = 6$

Solul 2) Greven equations
$$977 + 6y - 7 = 85$$

$$67 + 15y + 92 = 72$$

$$7 + y + 502 = 110$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

$$2000 = 100$$

```
211) 0.7 (110 - 3.14815 - 3.54074) 1
6138 - 3.54074) 1
        2(1) = 1.9135
    · 2(1) = 3.14815; y(1) = 3.54074; z(1)=1.9135
I Iteration
  => Put (x = 3.10815); 1= 1.9135; y1 = 3.50074 900
          \chi^{(2)} = (85 - 6(3.54074) + 1.9135) \frac{1}{27}
       x(2) = 2.4322
  =) put x = 2.4322; == 1.9135 in eq 0
        - y= (72-6(2.4322)-2(1.9135))-1
        =) put x = 2. u322; y = 3.572 vin eq 3
         g^{(2)} = (110 - 2.4322 - 3.572) \frac{1}{54}
         3(2) = 1.9258 JRP.1
 \chi^{(2)} = 2.4322; \chi^{(2)} = 3.572; \chi^{(2)} = 1.9258
=) put y = 3.572; Z = 1.9258 en ca 0
* II - Iteration
       q^{(3)} = (85 - 6(3.572) + 1.9258) \frac{1}{97}
       7B) = 2.4257
 =) put x = 2.4257; Z=1.9258 Pn eq 3
      y(3) = (72 - 6(2.4257) - 2(1.9258)) \frac{1}{15}
     put 2 = 2.4257; y = 3.573 in eq 3
         y(3) = .3.573
         3(3) (210-2.4257-3.573) 1
                 1.92595 3801
```

```
2(3) = 2.4257; y(3) = 3.573; 2(8) = 7.92595.
The Iteration beange - (1) h seisnie - (1)
   =) put (x = 2.4257) ; y = 3.573 ; 7 = 1.926 in cap
X(4) (85-6(3.573) +1.926) 1
27
            12) + 18 - 6 (3.5 UU 7 U) + 1.91 3°
    x(u) = 2.4255
   =) put 2=2.4255; ==1.926 9n eq@
    ylu) = (72-612.4255) -2(1.926)1
    ylu) = 3.573
   =) put n = 2.4255; y = 3.573
         \pm^{(a)} = (10-2.4255-3.573) \frac{1}{54}
              = 1.92595
              = 1.926 8360.
      .: x (u) = 2.4255; y(u) = 3.573; z(u) = 1.926
I - Iteration.
                                 * In Haatson
    =) put y= 3.573; t=1.926 in eq 0
         2(5) = (85-6(3.573)+1.926) 1
FORM 8
      S 87 118 = 8 2 4 255
   =) put = 2.4255; = 1.926 in eac
        y(5) = (72-6(2.4255)-2(1.926) 15
       (6) Pr 0= 3:5.73
   =) put n= 2.4255; y= 3.573 in eq3
         2(5) = (110 - 2.4255 +3:573.) (1)
              = 1.926 dp2 p.1
```

: x15) = (2. 1255 x; y L5) = 3.573; 215) = 1.926							
vorable	st	and vo	3rd J.o.	uth	5 th		
	3.14815	2.4322	2.4257	2.4255	2.4255		
y y	3.54075	3.572	3.573	3.573	3.573		
U	1.9135	1.9258	1		T Think		
4. Griven	Equations	us 98n	0 - 6 - 6	A : 0 : 2	fun (=		
7+ 108	1+2=6	1 / 980	2- 119.0=	9) - 4			
102 7	-y+ = = 6		TEAU.U -	(4) h	7		
	+102 = 6		E : 0FB	N.O .K	tug (=		
	y+ = 6	N. J. ME	A -0-31	1 (G) B			
	10y+ = = 6 y+ 10 = =	, 1'	U. 50 of	Ē.			
Equation	in domenant sustem						
10x+y+2=6							
	$\gamma = (6 - y + z) \rightarrow 0$						
0.500.0	7(8) 2+1	04+2=	691.	CALL.	(8),		
		9-10	7	1			
Q E	27	4+102	= 6 0	0 0 11	2111 - III		
2 + y + 10 = 6 $2 = (6 - x - y) + 0$							
7 -1 -10							
=) put y=0; z=0 in eq 0							
$\chi(1) = (6-0-0) \frac{1}{10} = 0.6$							
$= (6-8-8) \frac{10}{10}$ =) put $x = 0.6$; $z = 0.8$ n $eq 2$ $y(1) = 0.66 - 0.6 - 0) \frac{1}{10} = (e) = 0.6$							
8 (0 - 6 - 6) - 6) - 6) - 6) - 6) - 6) - 6)							
= 0.54010002.0							

=) Put
$$x = 0.6$$
; $y = 0.5u$ | Fin $eq. 6$ - d = $eq. 6$ - $eq. 6$ = $eq.$

13) = al 4998 (y (3) = 0.500014; 213) = 0.500019 =) put (x=0.4998) y= 0.500014; 2=0.500019 in ead $\chi^{(4)} = (6 - 0.500014 - 0.500019) \frac{1}{10}$ = 0.49910 =) put x=0.49910; g=0.500019 in eq@ y (4) = (6-0.49910-0.500019) + = 0.50009 de - 2801 + exe + 10 =) put x= 0.49910; y= 0.50009 in eq 3 $z(u) = (6-0.49910-0.50009) \frac{1}{10}$ = 0.500081 2(u) = 0.49910 , ylu) = 0.50009 ; 2(u) = 0.500081 V - Iteration =) put y=0.50009; 7=0.500081 in ea 1) x (5) = (6-0.50009-0.500081) 1 = 0.49910 =) put x=0.49910; 2=0.500081 in eq @ y(5) = (6-0.49910 -0.500081) to = 0.50008+9Put x = 0.49910; y = 0.500082 in eq3 215) = (6-0.49910 - 0.500082) 10 1=0.5000820-88)

110.6 =

Scanned with CamScanner

Variable	9.0 St(8)	e androod	0	u 6.	7 - (8) 8
y y	0.6	0.4974	B 500011	01 5000	0.5000
2.	0.086	0.50066	0.500	9 -035000	χ.

3. Gieven Equation

$$8x_1 - 3x_2 + 2x_3 = 20$$

 $4x_1 + 11x_2 - x_3 = 35$
 $6x_1 + 3x_2 + 12x_3 = 36$

Equation (a) is a diagonally dominant system

$$8x_{1}-3x_{2}+3x_{3}=20$$

$$x_{1}=(20+3x_{2}-9x_{3})\frac{1}{8}\rightarrow 0$$

$$ux_{1}+11x_{2}-x_{3}=33$$

$$x_{2}=(33-ux_{1}+x_{3})\frac{1}{11}\rightarrow 0$$

$$6x_{1}+3x_{2}+19x_{3}=36$$

$$x_{3}=(36-6x_{1}-3x_{2})\frac{1}{19}\rightarrow 3$$

I - Iteration is issue of the top

=) put
$$32 = 0$$
; $23 = 0$ in 20
 $21 = (20 + 310) - 210)$
= $20 = 2.5$
=) put $21 = 2.5$; $23 = 0$ in eq. (2)
 $22 = (33 - 4(2.5) + 0) \frac{1}{11}$
= 2.091

a) put
$$x_1 = 2.5$$
; $x_2 = 2.09\pi$ in 10.69 (3)

 $x_3^{(1)} = (36-6(2.5)-3(2.091))\frac{1}{12}$
 $= 1.22725$
 $= 1.23$
 $x_1 = 9.5$; $x_2 = 2.091713=1.23$

I - Iteration

a) put $x_2 = 9.091$; $x_3 = 1.93$ in eq (0)

 $x_1 = \begin{bmatrix} 20 + 3(2.091) - 2(1.93) \end{bmatrix} \frac{1}{8}$
 $= 2.976625$
 $x_1 = 2.977$; $x_3 = 1.93$ in eq (2)

 $x_2^{(2)} = (33 - u(2.977) + 1.93) \frac{1}{11}$
 $= 2.0293$

a) put $x_1 = 2.977$; $x_2 = 2.0293$; $x_3 = 1.0002$
 $x_3^{(2)} = \begin{bmatrix} (36 - 6(2.977) - 3(2.0293) \end{bmatrix} \frac{1}{12}$
 $= 1.000175$
 $= 1.0002$
 $x_1^{(2)} = 2.977$; $x_2^{(2)} = 2.0293$; $x_3^{(2)} = 1.0002$

II · Iteration

a) put $x_2 = 2.0293$; $x_3 = 1.0002$ in eq (1)

 $x_1^{(3)} = \begin{bmatrix} 20 + 3(2.0293) - 2(1.0002) \end{bmatrix} \frac{1}{8}$
 $= 3.002$

b) put $x_1 = 3.001$; $x_3 = 1.0002$ in eq (2)

 $x_2^{(3)} = (33 - u(3.001) + 1.0002) \frac{1}{11}$
 $= 2.000018$

variable	boist	and	3rd	uth	5 th
γ	2.5	2.977	3.001	3.000	3.000
U S D	2.091	2.0293	2.000	2.000	2.000
2	1.23	1.00 42	09995	1.00 20 5	1,000
gate solo	lve 10x, -	1×2 - ×3 -7	u= 3 ;	-27, +107	12-13-74=15
14 12 2013 - ×2	+1023 - 2	274 = 15;	-1,-22-	223 +1024	12-43-74=15 1=-9 by
GAUSS - SC	edl method	correct	to three	decimal	places.
shill Gieven &	quations	1 - (1) = 1	121 - (1		
104, -2	72-73-71	4=3 -	7	, E . S . O	(1)
-27,+	1022-23-	-74 = 15 N		009 K	MITE TE
	22 +1023 -		(A)	195 1 =	er the
-71-	22 - 223 -	+1074=-9	19.1164	8) 1 10.	(2)
Equation (A is Q	tionu=-9 dragonally	tomina	nt system	7)
1021	212-13-	10		x 1 5 0.2	tuq (=
1 =	7/0/3+22	2 + 73 + 74)		J - (6)	ç e 2
-2717	10x2-x	3-74= 15	3698EE.	1 -	
(x2 =	(15+2x,	+ 23 + 24).	$\frac{1}{10} \rightarrow 2$	41 - 0.	tug (-
χ3 =	= 1 [15	+7,+22+	2747 ->(3)	ζ
	•	9+71+72.	+2737-	(4)	
I-Iteratio	n	01+61.	37. 806	x 15 0 0	+09 (=
=> put 712		The state of the s			100
	$l_1 = \frac{1}{10} l_3$	+210)+0	+0)		
	= 0.3	Li. GEEV	200	900	(3) 9 6
e) put x	, 20.3 ;	13=0; 11	1=0 111		
,	12= 101	15+26-3	3)+0+0)	1	1
a de la companya de l	= 1.8				

```
=) put 2=0.3 2=1.56; xu=0 pn eq 3
          23^{(1)} = \frac{1}{10} \left[ 15 + 0.3 + 1.56 + 0 \right] = 1.686
=) put x1=0.3; x2=1.56, x3=1.686 9n eq@
 7u= 101-9+0.3+1.56+2(1.686)
                = -0.378
   \therefore \chi_1^{(l)} = 0.3; \chi_2^{(l)} = 1.56; \chi_3^{(l)} = 1.686; \chi_4^{(l)} = -0.37
 =>Put x2=1.56; x3=1.686; x4=-0.374 in eq0
      \chi_1(2) = \frac{1}{10}(3+2(1.56)+1.686-0.37*)
  =) put x_1 = 0.74223; x_3 = 1.686; x_4 = -0.378 in eq. (2)
       22(2) = 10(15+2(0.7422)+1.686-0.374)
               = 1.778695
   -> put x1=0.74223; x2=1.7795; xu=-0.377 in
        \chi_3(2) = \frac{1}{10}(15+0.743+1.7795+21-0.377)
 =) put x1=0.7u3; x2=1.7795; x3=1.6768 in eq@
                = 1.6768
         \chi_{u}^{(2)} = \frac{1}{10} \left( -9 + 0.743 + 1.7795 + 2(1.6768) \right)
   2,^{(2)} = 0.743 ; \chi_2^{(2)} = 1.779 ; \chi_3^{(2)} = 1.6768 ; \chi_4^{(2)} = -0.3124
                           20-8x 182-1x Ind (a
                xg= 1 (15+2(6-3)+0-16)
```

```
II - Iteration
 =) put x2 = 1.779; x3 = 1.6768; x4= -0.3124 enead
      71= 10 (3+2(1.779)+1.6768+-0.3124)
          = 0.7922
 => put x1=0.7922 ; x3=1.6768; xu=-0.3124; neq@
      22<sup>(3)</sup>= + (15+2(0.7922)+1.6768-0.312u)
= 1.79u88 = 1.795

=) put x1=0.792; x2=1.795; xu=-0.312u in eq 3
      \chi_3^{(3)} = \frac{1}{10} \left[ (15 + 0.792 + 9.795 + 20.312u) \right]
=) put x_1 = 0.792; x_2 = 1.795; x_3 = 1.696 in eq y
     2u^{(3)} = \frac{1}{10}[-9+0.792+1.795+2[1.696)]
             = -0.3021 = -0.302
 (3) = 0.792; \chi_2^{(3)} = 1.795; \chi_3^{(3)} = 1.696; \chi_u^{(3)} = -0.302 
=> put x2=1.795; x3=1.696; x4=-0.302 9neq 1)
N- Iteration
     \chi_1(u) = \frac{1}{10} \left[ 3 + 211.795 \right] + 1.696 - 0:302
           = 0.7984 = 0.798
=) put x1=0.798; x3=1.696; x4=-0.302 9n eq@
     22^{(u)} = \frac{1}{10}(15 + 2(0.798) + 1.696 = 0.302)
 =) put x120.798; x2=1.799; x4=-0.302 9n eq 3
      23(u) = 10(15+0.798+1.799+2(0.302))
              = 1.6993 = 1.699
```

$$\chi_{u}(u) = \frac{1}{10} \left[-9 + 0.798 ; \chi_{2} = 1.799 ; \chi_{3} = 1.699 ? n eq \Theta$$

$$\chi_{u}(u) = \frac{1}{10} \left[-9 + 0.798 + 1.799 + 2(1.699) \right]$$

$$= -8.3005$$

$$= -0.300$$

: x, lu) = 0.798 ; x2(u) = 1.799; x3(u)=1.6991 x4(u)=-0.30 II - Iteration

=) put
$$\chi_2 = 1.799$$
; $\chi_3 = 1.699$; $\chi_4 = -0.300$; $n eq 0$
 $\chi_1(5) = \frac{1}{10} \left[3 + 2(1.799) + 1.699 - 0.300 \right]$
 $= 0.7997 = 0.799$
 $= 0.7997 = 0.799$

$$= 0.7997 = 0.799$$

$$= 0.7997 = 0.799$$

$$= 0.7997 = 0.799$$

$$= 0.300 \text{ in eq}$$

$$= 0.7997 = 0.300 \text{ in eq}$$

$$=) put \quad \chi_{1} = 0.798 ; \quad \chi_{2} = 1.799 ; \quad \chi_{4} = -0.300 \text{ Pn (93)}$$

$$=) put \quad \chi_{1} = 0.798 ; \quad \chi_{2} = 1.799 ; \quad \chi_{4} = -0.300 \text{ Pn (93)}$$

$$\chi_{2}(5) = 1.115 + 0.798 + 1.799 + 2[0.300)$$

$$(23^{15}) = \frac{1}{10} [15 + 0.798 + 1.799 + 2[0.300)]$$

= 1.6997 = 1.699

$$\Rightarrow put \ \pi_{1} = 0.798 \ ; \ \pi_{2} = 1.799 \ ; \ \pi_{3} = 1.699 \ \text{?n. eq} \ 0$$

$$\pi_{u}^{(5)} = \frac{1}{10} \left[-9 + 0.798 + 1.799 + 2[1.699] \right]$$

= -03005 = -0.300

variable	(st	= -0300	3rd	4th	5th
	0.3	0.743	0-792	0.798	(0.798
2165	17 80g 6	1-779	1-715	1-799	1.799
82	1.56	1.6768	1.696		1.699
₺ 3 ¼	1.686		-0.30	-0.30	-0.30

Gauss - Golutions of Linear systems Direct Methods i) Groussian Elimination Syethod This method of solving system of n knear Equations in in unknowns consists of eliminating the co-efficients in such a way that the system reduces to upper treangular system which may be solved by bockward substitution. 1. solve the Equations 22+y+2=10;32+y+32=18;7+4y+92. =16; by using Grouss elimination method. solul Girven Equations GIVEN EQUATIONS 27ty+2 =10 27+24+32=18 >0 system () can be expressed in the form Ax=B $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 9 \end{bmatrix}$; $X = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$; $B = \begin{bmatrix} 10 \\ 18 \\ 16 \end{bmatrix}$ where Argumented matrix $[AB] = \begin{bmatrix} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{bmatrix}$ $\sim \begin{bmatrix} 2 & 1 & 1 & 10 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & -4 & -20 \end{bmatrix} R_3 \rightarrow R_3 - 7R_2$

which is a upper trangular matrix

$$32+y+2=10; y+3=6$$
 $-42=-20$
 $2=-5$
 $2-9+5=10$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$
 $2=-9$

```
which is a upper triangular matrix
          3x+y-2=3
             -2by +57 =-21
     :0 x=1, y=1, 2=1
3. Solve 22+y+ == 10; 32+2y+32=18; x+uy+92=16
     by using Grauss- Jordan-Method (only row operations)
solul Given Equations
        2x + y + 2 = 10

3x + 2y + 32 = 18

2 + uy + 92 = 16
    system 1) con be expressed
       [AA] = \begin{bmatrix} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{bmatrix}
     where
```

2=7; y=-9; Z=5

4. Solve the equations 2+y+2=6; 3x+3y+v==20; 2x+y+32 = 13; using partial prvoting Groussian climination fuethod.

solul Girven Equations

$$2x+3y+42=00$$
 $2x+y+32=13$

System 1) can be expressed in the form

AX=B Where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix} ; X = \begin{bmatrix} 2 \\ y \\ 2 \end{bmatrix} ; B = \begin{bmatrix} 6 \\ 20 \\ 13 \end{bmatrix}$$

argumented matrix

$$[AB] = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 3 & 3 & 4 & 20 \\ 2 & 1 & 3 & 13 \end{bmatrix}$$

which is on upper triangular matrix

$$1+3(2)-1=4$$
, $2+3+2+2=4$
 $1+3(2)-1=4$, $2+3+2+2=4$
 $1+3(2)-1=4$, $2+3+2=4$
 $1+3(2)-1=4$, $2+3+2=4$
 $1+3(2)-1=4$, $2+3+2=4$
 $1+3(2)-1=4$, $2+3+2=4$
 $1+3(2)-1=4$, $2+3+2=4$
 $1+3(2)-1=4$, $2+3+2=1$
 $1+3(2)-1=4$, $2+3+2=1$
 $1+3(2)-1=4$, $2+3+2=1$
 $1+3(2)-1=4$, $2+3+2=1$
 $1+3(2)-1=4$, $2+3+2=1$
 $1+3(2)-1=4$, $2+3+2=1$
 $1+3(2)-1=4$, $3+3+2=1$
 $1+3(2)-1=4$, $3+3+2=1$
 $1+3(2)-1=4$, $3+3+2=1$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-1=4$
 $1+3(2)-$

Scanned with CamScanner

Solul Griven Equations

$$10x_{1} + x_{2} + x_{3} = 12$$

$$x_{1} + 10x_{2} - x_{3} = 10$$

$$x_{1} - 2x_{2} + 10x_{3} = 9$$

system 0 can be expressed in the form AX=8

$$A = \begin{bmatrix} 10 & 1 & 1 \\ 1 & 10 & -1 \\ 1 & -2 & 10 \end{bmatrix}; X = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}; B = \begin{bmatrix} 12 \\ 10 \\ 9 \end{bmatrix}$$

Argumented matrex

regumented matrix
$$[AB] = \begin{bmatrix} 10 & 1 & 1 & 12 \\ 1 & 10 & -1 & 10 \\ 1 & -2 & 10 & 9 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -9 & 10 & 9 \\ 1 & 10 & -1 & 10 \\ 10 & 1 & 1 & 12 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -9 & 10 & 9 \\ 0 & 12 & -11 & 1 \\ 0 & 21 & -99 & -78 \end{bmatrix}$$

$$R_2 \rightarrow P_2 - R_1$$

$$R_3 \rightarrow P_3 - 10R_1$$

$$R_4 \rightarrow P_4 - R_1$$

$$R_5 \rightarrow P_5 \rightarrow P_6$$

$$R_7 \rightarrow P_7 \rightarrow P_7 \rightarrow P_7 \rightarrow P_7$$

$$R_7 \rightarrow P_7 \rightarrow P_7$$

8. solve the system of Equations by Grauss-scidel method 20x+y-2==17; 3x+20y-2=-18; 2x-3y+20= = 25 10 po 09 60101 . E : 9 E80 11 = H fed (=

solul Greven Equations

Equation @ can be expressed [in the form Ax=B where $A = \begin{bmatrix} 20 & 1 & -2 \\ 3 & 20 & -1 \\ 2 & -3 & 20 \end{bmatrix}$ $X = \begin{bmatrix} 7 \\ 4 \\ 7 \end{bmatrix}$ $B = \begin{bmatrix} 17 \\ -18 \\ 25 \end{bmatrix}$

Arg) Equation @ is a diagonally dominant

$$2 = (17 - y + 22) \frac{1}{20} \rightarrow 0$$

$$A = (17 - y + 22) \xrightarrow{1} \longrightarrow 0$$

$$A = (17 - y + 22) \xrightarrow{1} \xrightarrow{20} \longrightarrow 2$$

$$\frac{2}{2} = \frac{125 - 27 + 34}{20} \rightarrow 3$$

J- Iteration

=) put
$$y=0$$
; $z=0$ in ea 0
 $y=0$; $z=0$ in ea 0
 $y=0$; $z=0$ in ea 0

=) Put
$$x=0.85$$
; $z=0$ in eq @

 $y^{(i)} = (-18-3(0.85)+0)\frac{1}{20}$

= -1.0875

=) Put $z=0.85$; $y=-1.0875$ in eq @

 $z^{(i)} = (25-2(0.85)+3(-1.0275))\frac{1}{20}$

= 1.010875

= 1.0109
 $z^{(i)} = 0.85$; $z^{(i)} = -1.0275$; $z^{(i)} = 1.0109$

I - Iteration

=) Put $z=-1.0275$; $z=1.0109$ in eq @

 $z^{(2)} = (17+1.0275+2(1.0109))\frac{1}{20}$

= 1.0025

=) Put $z=1.0025$; $z=1.0109$ in eq @

 $z^{(2)} = (-18-3(1.0025)+1.0109)\frac{1}{20}$

= -0.99983

Put $z=1.0025$; $z=1.0025$; $z=1.0109$; $z=1.0025$

=) Put $z=1.0025$; $z=1.$

9. Solve the following system of Equations by using Gauss - scidel method correct to three decimal places . 8x-3y+27 = 20; ux+11y-2=33; 6x+3y+127=35

$$8x - 3y + 27 = 20$$

 $4x + 11y - 7 = 33$
 $6x + 3y + 127 = 35$

system (#) is a dragonally dominant system where

$$x = \frac{1}{8} (20 + 3y - 22) \rightarrow 0$$

$$y = \frac{1}{1} (33 - ux + 2) \rightarrow 2$$

$$z = \frac{1}{12} (35 - 6x - 3y) \rightarrow 3$$

$$\frac{1}{12} (35 - 6x - 3y) \rightarrow 3$$

I- Iteration

=) put
$$x = 2.5$$
; $t = 0$ in eq 2

$$y^{(1)} = \frac{1}{11} (33 - 42.5) + 0) \text{ in } = 2.09090$$

$$= 2.091$$

=) put
$$\chi = 2.5$$
 ; $y = 2.091$ in eq 3
 $z^{(1)} = \frac{1}{12} (35 - 6(2.5) - 3(2.091))$
= $1.14439166 = 1.14444$
: $\chi^{(1)} = 2.5$; $\chi^{(1)} = 2.091$; $z^{(1)} = 1.4444$

```
I - Iteration
  =) put (x=8.5) y=2.091; == 1.444 in eq 0
          2 (2) = 1 (20+3(2.091) -2(1.444))
             = 2.923125
 =) put x = 2.923; z= 1. uuu in eq 0
         y^{(2)} = \frac{1}{11} (33 - u(2-923) + 1.444u)
           (13=3-2.0683636
               = 2.068
=) put x = 2.923; y = 2.068 in eq 3
         2^{(2)} = \frac{1}{12} (35 - 6(2.923) - 3(2.068))
   \therefore \chi^{(2)} = 2.923 ; \chi^{(2)} = 2.068 ; z^{(2)} = 0.938
II - Iteration
=> put y = 2.068; z = 0.938 ign eq 0
        \chi^{(3)} = \frac{1}{8} (20 + 3(2.068) - 2(0.938))
= 3.041
=) put 2=3.041; 2=0.938 in eq 2
         y^{(3)} = \frac{1}{11} \begin{bmatrix} 33 - 4 \begin{bmatrix} 3 \cdot 0 & 0 \end{bmatrix} + 0.938 \end{bmatrix}= 1.9794545 = 1.979
=) put z = 3.041; y= 1.979 in eq 3
          \frac{1}{2} = \frac{1}{19} (35-6-13-041) -3(1-979))
              = 0.9014166 = 0.901
```

$$\frac{1}{N} - \text{Iteration}$$

$$\frac{1}{N} - \text{Iteration}$$

$$\Rightarrow \text{ put } y = 1.979 ; 2 = 0.901 \text{ in } eq. 0$$

$$\frac{1}{N} \cdot \frac{1}{N} = \frac{1}{N} \left(\frac{1}{N} + \frac{1}{N$$

Scanned with GamScanne

=) put
$$x = 3.016$$
; $y = 1.986$; in eq (3)
 $3^{(5)} = \frac{1}{12} [35 - 6(3.016) - 361.986)]$
 $= 0.912$
 $\therefore x^{(5)} = 3.016$; $y^{(5)} = 1.986$; $z^{(5)} = 0.912$
 $T - Iteration$
=) put $y = 1.986$; $z = 0.912$ in eq (0)
 $z^{(6)} = \frac{1}{8} (20 + 361.986) - 260.912)$
 $= 3.01675 = 3.016$

put
$$y = 1.986$$
; $z = 0.912$ in eq. 0
$$z^{(6)} = \frac{1}{8}(20 + 3(1.986) - 2(0.912))$$

$$= 3.01675 = 3.016$$

=) put
$$\chi = 3.016$$
; $z = 0.912$ in eq (2)

 $y(6) = \frac{1}{11}(33 - 4.13.016) - 10.912)$

= 1.654545 1.986

=) put
$$x = 3.016$$
; $y = 1.986$ in eq. (3)
 $z = \frac{1}{12} \left[35 - 6 \left[3.016 \right] - 3 \left[1.986 \right] \right]$
= 0.9121666
= 0.912

2(6) = Q. DIb: 4(6) = 1.986 ; 7 (6) = 0.912

y 2	2.091	2.068	1.979	0.912	16-1	0.912
ranobis	2.5	2.923		3.017	1.986	1.986
Variable	T	I	四一	IV d	3.016	3.016

28/6/18 UNIT-SU- Introduction: Function. The Since y= f(x) be the given function. The given function defened in the interval (a, b) then it is Consider 1' takes the values xo, x1, x2, x3, x4--, xn the corresponding y-values are yo, y, y, y, y, y, y, y, nespectively. And the differences of x are is hither $\chi_1 - \chi_0 = h$, $\chi_2 - \chi_1 = h$, $\chi_3 - \chi_2 = h$, ---, $\chi_n - \chi_{n-1} = h$ =) x1=x0+h. Waspectively . At ox =1x (= => x2=x1+h => x2=(x0+h) +h h brown pobro had are tell-mix2= x0+2h le oboth consension out My Dec Bue =) x3 = x2+h=) x3 = (x0+2h)+h $\chi_3 = \chi_0 + 3h$ 1n-xn-1=h=> |xn=20+nh Given, y= t(x) Ab browshod pobro boose hollo oro yo=f(xo) v pv gv Evv more with and y, = f(x,) browland pobe brist bello $y_3 = f(x_3)$ = f(ro+3h) one letted central delle con your stages $\frac{y_n = f(x_n)}{\left[y_n = f(x_0 + nh)\right]}$ (color) difference operations and represented by Su, are represented by 41-40, 42-41, 43-42, 44-431

Lyo, Dy, Dy, Dy, --- nespectively one called first orden forward differences I and D is colled tonwand difference openation.

The difference 15 Δy, -Δyo, Δy₂-Δy, Δy₃-Δy₂, ---- are represented by Δ²y₀, Δ²y₁, Δ²y₂, --- are called second order forward differences tonwand differences

The differences

Δ²y, Δ²y, Δ²y, Δ²y, Δ²y, Δ²y, --- are represented

by Δ³y, Δ³y, Δ³y, --- mespectively and called

by Δ³y, Δ³y, Δ³y, --- mespectively there orden forward differences. The differences 4, -40, 42-41, 43-42, 44-43, --- ore nepresented by $\nabla y_1, \nabla y_2, \nabla y_3, \nabla y_4$ enceptively are called first onden backwand difference and ∇ is called Backward difference openation. The differences $\nabla y_2 + \nabla y_1, \nabla y_3 - \nabla y_2, \nabla y_4 - \nabla y_3, \dots$ nepresented by $\nabla^2 y_2$, $\nabla^2 y_3$, $\nabla^2 y_4$, ... nespectively are called second orden backwand differences. The differences $\nabla \hat{y}_3 + \nabla \hat{y}_4$, $\nabla \hat{y}_u - \nabla \hat{y}_3$, --- are repre Sented by Δ^3y_3 , Δ^3y_4 , ∇^3y_5 , -- nespectively are called third orden backwand differences. The differences 4,-40, 42-41, 43-42, 44-43, --, above nepresented by small (d) Sylz, Sy3/2, Sy5/2, Sy3/2 --nespectively are Called Central differences and 8 is called Control difference operation. The differences $\int y_{3|_2} - \delta y_{1|_2}$, $\int y_{5|_2} - \delta y_{3|_2}$, $\int y_{7|_2} - \delta y_{5|_2}$ ane nepresented by sy, sy, sy, --- nespectively are called second order central differences 3+1-11 11-11-11

Simplarly dy_ sy,, sy, sy, sy, sy, sy, -82-1- are nepresen ted by 5312 133 12 nespectively ore called the third orden central differences Sonce E's called shifting openation. It shelts the given function into the next level. Coas Thenefore $\Rightarrow \frac{ff(x_0) = f(x_1)}{ff(x_0) = f(x_0+h)}$ $fy_1 = y_2 \Rightarrow ff(x_1) = f(x_2)$ Eflaoth) = flaot2h) t. Eflao) = flao +2h) [E2flxo)=flxo+2h] ... Enfluo) = fluotoh) Similarly & flao) = flao+3h) Therefore [f(x) = f(x+nh) ** Note Since Enfly) = f(ztnh) put $n = -n = \sum_{x=0}^{n-1} f(x) = f(x+t-n)h$ E-nf(z) = f(z-nh)

Book Work Since we know the y,-yor 440 -> 0 and $fy_0 = y_1 \rightarrow 0$ from OE 2 $Ey_0 - y_0 = \Delta y_0$ (E-1) 46= 146 Relation between s.o and forward delevenes Since we know that y, - yo = Vy, -> 0 we know and Eyo = y, >> Yo = A-14, → ② From 0 & (2) 19 91 - E 4, = VY 4. (1- ET') = DY, $\mathbf{E}_{-1} = \mathbf{V} - \mathbf{A}$ Relation between shifting operator and backward Since we know that $y_{1} - y_{0} = dy_{1|2}$ $\Rightarrow y_{\frac{1}{2} + \frac{1}{2}} - y_{\frac{1}{2} - \frac{1}{2}} = dy_{1|2}$ $E'|_{x_{1}} - E^{-1/2}y_{1|2} = dy_{1|2}$ $E'y_{0} = y_{0+1}$ 4x [E 1/2 E - 1/2] = 64/12 E 1/2 E - 1/2 = 8 & Relation between central difference and shifting operator

u'is called Average operation. such that otverage Operator & $y_n = y_{n+1/2} + y_{n-\frac{1}{2}}$ $\mu y_n = E y_n + E^{-1/2} y_n$ $\mu = \frac{E'^{12} + E^{-1/2}}{2}$ The above equation is the relation between Average operator and shifting operator Pascal's Triangle. tot (1:10) f v(2+10(1+10)+1). HOLE CHURCHTO + OF ACHOUNT PROUPUR = OK 1 5 10 10 5 $\Delta^{4}y_{0} = 1y_{1} - 4y_{2} + 6y_{3} - 4y_{4} + 1y_{5}$ pate Newtons Forward interpolation formulae Consider y=f(x) be the given function. x creates the values, 20, 21, 22 -- 20 and the common difference between A' is h'. The corresponding 'y' values are yo.y., yz, --- yn rupectively yn= f(xo+nh)

```
write torward difference table for
             = R.H.S
                      30 40
                20
           10
    104:51 2.0 H.H. 7.9
             Dissenence Table
                7 = 2.0 - 1.1
        30
   Construct the deflerence table for the given data
   A: 0 1 2 3 4 and evaluate \Delta^2

Difference table st. 2nd 3rd th
Solu
                             0.7-0.5
             1.5-
                    20.7
      In the above question \Delta is given so that forward storte forward storte
     From the deservence table 1 + (2) = 0.6
      forward storts with yo
    Note in backward starts 40, 4, 142, 43
```

```
From the difference table $7 f(2) = 0.2
12. find the massing value of the following data.
   f(x): 7 -
               13 &1 37
    Difference toble
olu
                           and d
           f(x) st
      X
          $ 161 11 E -10
                     from the Difference toble
                                                  4)38(75
                            38-4y=0
  Prove that Uy= 23+ Du2+ D2 21 + D34.
Soluj
     R.H.S = 43+1242+124, +134,
      = u_3 + \Delta u_2 + \Delta^2 u_1 + (\underline{\Lambda}^2 u_2 - \underline{\Lambda}^2 u_1)
            = U3 + A42 + 124, + 1242 - 424,
           = 43+. A42+ 1242
           = 42+ AU2 + (143-142)
          = 43+ 143
= 48+ 44-43
= 24 = 8=6.4.5
14. Evaluate 40+4 Duo+6 D24-1+10 D34-1
solul
      [= 40+4040+6424++10034-1
 D
       = Mo+4 (4,-40)+6 (Au - Au, )+10. (A 4 2- A4)
        = Mot 44, - 440 + 6040 - 604 + 1042 -
```

Scanned with CamScanner

```
= 40+6040+100240 +44, - 604-1-1004-1
                                         = 40+6 Duo + 10 1240 +441 - 100 42, - 604, 7
                  = U0+44U0+642u,+10 43u-1
                   = 40+4240+6224-1+10[2240-124-1]
                        = 40+4140+61241+101240-10124-1
                          = 40 +4 Auo+101240-4124-1
                          = u0+ u2u0+100240 -4( Q40- Qu_1)
   = u_0 + u_
                       = 40+ 10[041- 440] +4 (40-4-1) and (x) + (x) +
                             = 40+10 Du 1-10 Duo + 440-44-10)
                               = u0 + 10 [u2-41] - 10 [u, - u0] + 440 - 44.
                                    = 1042 - 204, +1540 -44+1
15. Evaluate ((carlog(bx))
                              \Delta f(x) = f(x+h) - f(x)
= e^{a(x+h)} \log b(x+h) - e^{ax} \log (bx)
solu
                  4295 a function of 2 for which 5th differences ore
                   constant and u_1 + u_7 = -786; u_2 + u_6 = 686; u_3 + u_5 = 1088
   16
                                                                                                                                                                                               - 4902 + 16320=204
              find U4 that 5th differences are constants
              2049 = 1148

Since we know that \Delta = F-1 white 2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

2049 = 1148

                                                                                                                                                                                                      2048 = 11U18
solul
                [1.E6-6C,E5+662E4-663E3+664E2-665E+6661]41=0
                 Eu, -6 Eu, + 6x5 Eu, - 6x5x4 Eu, 6x5x4 Eu, 1x2x8x4, 1,xx3.4.5
                      E'41 - 6E 4, +15E4, - 20E4, +15E4, - 6E4, +41 = 0
                               U7 - 646+1545 - 2049+1543+6842+41=0
                              (43+41)-+6(46+42) +15(45+43) -2044=0
                                              - 786 - 66 686) +15 ( 1088 ) - 2044 = 0
                                                                                     786 - 4116 +16320 - 2044 = 0
```

Note:
$$e^{x} = 1 + 2 + \frac{2^{2}}{3!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{1}{4!}$$

Since we know that $f(x) = f(x) = f(x) + \frac{1}{4!} f''(x) - \dots + \frac{1}{4!} f''(x) + \frac{1}{4!} f''(x) - \dots + \frac{1}{4!} f''(x) + \frac{1}{$

$$= \frac{(-1)h}{2} \left(\frac{\gamma - (\gamma + 2h)}{\gamma(\gamma + h)(\gamma + 2h)} \right)$$

$$= \frac{(-1)h}{\gamma(\gamma + h)(\gamma + 2h)}$$

$$= \frac{(-1)^2 2 h^2}{\gamma(\gamma + h)(\gamma + 2h)} \left(\frac{1}{\gamma(\gamma + h)(\gamma + 2h)} \right)$$

$$= \frac{(-1)^2 2 h^2}{(\gamma + h)(\gamma + 2h)(\gamma + 2h)} \left(\frac{1}{\gamma(\gamma + h)(\gamma + 2h)} \right)$$

$$= \frac{(-1)^2 2 h^2}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)} \left(\frac{1}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)} \right)$$

$$= \frac{(-1)^2 2 h^2}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)(\gamma + 2h)}$$

$$= \frac{(-1)^2 2 h^2}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)(\gamma + 2h)}$$

$$= \frac{(-1)^3 1 \chi_2 \chi_3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$= \frac{(-1)^3 1 \chi_2 \chi_3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+ \frac{(-1)^3 3 h^3}{\gamma(\gamma + h)(\gamma + 2h)(\gamma + 2h)}$$

$$+$$

```
Por Girven, 40+48 = 1.9243, 4,+47 = 1,9590, 42+46=1,9823
    U3+U5 = 1.9956 then find Uy,
  Since
solul
 40[1. E8-8c, E7+8c2E6+8c3E5+8c4E4+8(3E3+86E+2+8GE+8c4
    40E8 - 8E 40 + 8X7 E 640 + 8X7X & E 40 + 8X7X & E 40 + 1X2X3X4 E 440
      + 8x7x6x9x13 E340 + 8x7 x6x9x4x3 E240 + 8x7x6x5x4x8x6x3 E4
   48 - 847 + 2846-45645 + 704 - 5643+ 2842 - 1841 + 40=0
  104 (40+48)-8(4,+47)+8(42+46)-56(43+05)=0
  7044+1.9243 -8(1.9590) +28(1.9823)-56.(1.9956) =0
   70441.9243-8 15.672 + 55.5044 - 111.7536= 0 1.9243
              169.9969 = 7044 BE = 11 . 75.
                    un = 69.9969 solor present bar)
                    Uy = 0.999955714 2.
19. find the missing term in the following
                              31
Solul Consider Ayyo = 0 - 70 Ay 1 = 0 - 0 and we know that
        Δ= E-1 Sub in 0 90 (E-1) 41=0
   (E-1) 4 yo =0
 =>[1. E4 - nc1 E3+ nc2 E3+ nc3 E + nc3 = 0 &
      [1. E4 - 41. E3+41. E2+41.3 E+ 41. U] 4 1=0
   [=) [U54 - 403 + 12 x3 U2 + 4 x3 x2 U1 + 4] y0 = 0 &]
    => E40 - UE34 + UX3 40E2 - UX3X2 +40 +1.40=0 &
       E 4 y - u E 3 y, + ux3 y, E - ux3x2 Ey, +1.41=0
```

$$y_{4} - uy_{3} + by_{5} - uy_{1} + y_{0} = 0 + 0$$

$$y_{5} - y_{1} + by_{5} - by_{5} + y_{1} = 0 \rightarrow 0$$

$$11 - uy_{5} + b(10) - u(10) + b$$

$$11 - uy_{5} + b(10) - u(10) + b = 0$$

$$11 - uy_{5} + b(10) - uy_{5} + b = 0$$

$$11 - uy_{5} + b(11) - uy_{5} + b = 0$$

$$11 - uy_{5} + b(11) - uy_{5} + b = 0$$

$$11 - uy_{5} + b(11) - uy_{5} + b = 0$$

$$11 - uy_{5} + uy_{5} - uy_{5} -$$

```
37-4X21+1X13-44,77=0
                                           -uy,+37+7+78
                                                                                                  21 Estimate the missing term in the following table:
                                   1 2 03 6+ 8 F10 32 18 64 2120. 1280 F10. 8
                       \Delta^{6} y_{0} = 0 E = 1+\Delta
(E-1)^{6} y_{0} = 0
       [E.1 +6c, E5 +6c2 E4+6c3 E3+6cy E4+6c5 E+6c6] 40=0
             E 40 + 6E 40 + 15E 40 + 8.5.4 E 340 + 6.5.4.3 E 40 + 6.8.4.3.7 Eyot yo
                        46+645+1544-2043+1542-64,+40=0
                      128-6(64) +15(32) -20(43) +15(8)-6(4) +2000 120 13
                            128-384 + 480-2043+120-24+2=0
                                                 422 = 2043

43 = 21.)
 22. Given log 100 = 2; log 101 = 2.0043; log 103 = 2.0128; log 104 = 2.017
          and find log 102. CH + WH- (PC) of GEEN - NE
                      2 100 101 102 103 HAILOY CI - 11 103 HAILOY CI - 11
Solul
                   = 1092
                                                 we
                           Since
                                 04 20 = 0 0 = 4 [ mm + 3 = 1 + 1 = 1 = 1 = 1 = 1 = 1 ]
                                       From E = 1+418 + 183N - 18 39 + 183N - 1843
                                                                              12- 1174- PAS -1175 + A1 = 0
```

```
(F-1) 4 y = 0
[1. F4 7 uc, F3 + uc2 E - uc3 E + uc4] yo =0
   E 40 - 4 E 3 yo + 11x2 E 2 yo - 4x3x2 & yo + yo = 0
                                                    2.0170
    2.0170-4(2.0128) +642-4(2.0043) +2 =0
    yu - uy3 + 6 y2 2 muy 1 + y0 = 0
     2.0170-8.0512+642-8.0172+2=0
         4.0170-16.0684+642=0
                  642 = 12.0514 cf work on since
               y_2 = 2.0086

\log_{10} 2 = 2.0086
find the missing values of the following 35 25 30 35
  Since we know that the terms with the
         Δ4λ0 =00= 1-ne-oct+ 6602-08n+ 686-861
       (f-1) 4 yo = 0 8
  [1. E4 - uc, E3 + ucz £2 + ucz £ + ucy] 4n=0
E4y0 - UE3y0 + 6E2y0 + 450 + 40 = 0
      y_{4} - uy_{3} + by_{2} - uy_{1} + y_{0} = 0
y_{4} - u(32) + b(29) - uy_{1} + u3 = 0
\frac{217}{128}
        44 - 128 + 174 - 44, +43 = 0
44 - 44, = 128 - 174 - 43
      yy-uy, = 128 - 219
        yy-uy, = -89 -0 (ον) uy, -yu =89 -0

Δyy = 0 (ον) uy, -yu =89 -0
        (f-1)441 = 0
    [1. £4 - 40, £3 + 40, £2 + 40, 2 £ + 40, ] y, = 0 - 20
      Ey, - 46 24, - 484, + 41 = 0 mort
        45- 444+643 -442+41 =0.
```

77 - 4y + 6(32) - 4(29) + 91 = 0

$$y_1 - 4y_4 + 77 + 82 - 116 = 0$$
 $y_1 - 4y_4 = 116 - 102 - 77$
 $y_1 - 4y_4 = 116 - 269$
 $y_2 - 4y_4 = 116 - 269$
 $y_3 - 4y_4 = 116 - 269$
 $y_4 - 4y_4 = 116 - 269$
 $y_5 - 4y_4 = 116 - 26$

4541 = 0 -10 0= 18+ (PE)H- (E8) S+ NEH- FF 1 31 - 0 - 10 16. (f-1) 5y1=0 [1. E5 + 5c, E4 + 5c2 E3 + 5c3 E2 + 5c2 E45c5] 41=0 ₹\$1, ₹5c, ₹4 +1 +5c2 €34, ₹5c3 €31 +5c4 € 4, ₹5c5 41=0 96 + - 545 + 1044 - 10A3 +245 - A1 = 0 u30 - 545 + 10(350) - 1043 + 5 (260) - 220 = 0 $\frac{1}{5010} - 545 + 3500 - 1043 + 1300 - 220 = 0$ 5010 - 545 - 1043 = 0 1 $0 - 54_5 - 104_3 = 0$ $54_5 + 104_3 = 5010 \rightarrow 4$ From $0 \in 2$ 6 = 706 = 20 6 = 706 = 20From ② and ② $\frac{45 + 1043}{5450} = 3450$ $\frac{545 + 1043}{5450} = 5010$ - 445 = -1560 45 + 1043 = 3450 $\frac{43}{5176 + 10590} = -10590 + 2392$ = 1 $\frac{43}{5176 + 10590} = -10590 + 2392$ = 1 $\frac{43}{5176 + 10590} = -10590 + 2392$ = 1 $\frac{43}{3000} = \frac{45}{3000} = \frac{1}{3000}$ $\frac{43}{3000} = \frac{1}{3000} = \frac{1}{3000}$ $\frac{43}{3000} = \frac{1}{3000}$ $\frac{43}{3000}$ 1043=3450-390 43=16.2571 45=6.33

31. Pit a polynomial of degree 3 and hence determine yl3.5) for the following data. X: 60 120 24 y 1st 2nd 3rd

24] 18] 18]

60] 36] 24] 6 Difference table. 3 By Newton's forward Interpolation formula yn= yo+n Δyo +n(n-1) Δyo +n(n-1)(n-2) 43 yo $\eta = \frac{\chi - \chi_0}{L} = \frac{\chi - 3}{1} = \chi - 3$ $4(3^{2}5) = 6 + (2-3) \cdot 18 + (2-3)(2-3-1) \cdot 18 + (2-3)(2-3-1)(2-3-2)$ = 6 + 18x - 54 + (x-3)(x-u)x/8 + (x-3)(x-u)(x-5) X/8 $= 6 + 18x - 54 + (x^2 - 3x - 4x + 12) + (x^2 - 3x - 4x + 12)$ $= 6 + 18 \pi - 5 \pi + 9 \pi^{2} - 27 \pi - 36 \pi + 108 + \pi^{3} - 3 \pi^{2} - 4 \pi^{2} + 12 \pi$ $= \frac{5 + 181 - 34}{-511 + 1511 + 2021 - 60} = \frac{27}{36} = \frac{18}{36} = \frac{37}{36}$ $= \frac{36}{36} = \frac{36}{36} = \frac{36}{411}$ $= \frac{3}{411} = \frac{3}{411}$ $= \frac{3}{411} = \frac{3}{411} =$ 9(3·5) = (3·5) 3 = 3(3·5) +2(3·5) +10 hallo = 42.875 -3(12.25) +7 = 42.875 - 36.75 +7 32. find the cubic polynomial which takes the following values. y(0) = 1, y(1) = 0, y(2) = 1, y(3) = 10.

Hence obtain you has a some to lorno way of 19 y(0)=1, y(1)=0 y(2)=1. y(3)=10Difference table

so y st 2nd on grd on grd Newtons forward interpolation formulae yn = yot nayot n(n-1) ayo +n(n-1)(n-2) 13yo
21 31 $U = \frac{1}{X - X^0} = \frac{1}{X - 0} = \frac{1}{X} = \frac{1}{X} = \frac{1}{X}$ X=x X0=0, h=18-x 8-x - 0x-x -1 $\frac{y_{n}=1+x_{1}+x_{1}+x_{1}+x_{1}+x_{2}+x_{1}+x_{2}+$ W(2-1)(=11-X+x2x+x3-x2-2x2+2x =64-32+1:.y(u) = 33 [0,3] interval 'u' is out of intravel so it is called extrapolation. find the polynomial interpolating the data 33 x: 0 1 2 y of 5 2 Bifference Table

2 y st and lamonyly sedus out home se 5] -3] -8 | . 1 = (e) | . 0 = (1) | . ± = (0) |

```
Newton's torward Interpolation formula
    yn= yn+η Δyo +n(n-1) Δ2yo + n(n-1)(n-2) Δ3yo

\eta = \frac{X - X_0}{h} = \frac{X - 0}{h} = X

X = X \qquad X_0 = 0 \qquad h = 1

 (4n = x + x(0) + x(x-1) + x(x-1)(x-2) = \frac{24}{83}
     \frac{8(2-x)+(x^2+x)+(x^2+x)(x-2)(u)}{2} + (x^2+x)(x-2)(u) + (x^2+x)+(x^2+x^2+2x)(x-2)(u)
     - KE4 KES (XC+5X125X) Kd- KE-181- 21.
 2 4n = 10 + x 5 + x(x-1) x(x)4

2 (x2x)4 TP+ xE-8+ x8-38
       = 5x = ux 2+ ux 2+ d- xp+
34 Find the polynomial of deg(u) which takes the following
   8 ( d. + yn += x + u2 + 9x
    Values
                        8 98 40KIPL 8 x ES 8
            2
          0 D 60 (2) 0+00
    Use Newtons Forward Disserence Formula to obtain the
     interpolating polynomial fix) satisfying the following data
                            4 and tend and x=5
                  2
      Form the Difference toble
                  18
solu
              y st and 3rd
3月.
        2 18 - -8 ] -6 ] 16 Mistake well 4 1 ] -8 ] 11 ] 16 Mistake well
```

From Newton's Interpolation forward formulae ynt yo+nayo+n(n-1) a2yo+ n(n-1)(n-2) a3yo $(n = \frac{x - x_0}{h}) = \frac{x - 1}{1} = x - 1$ X=x; X0=1; h=1 $y_n = 26 + (\chi - 1)(-8) + (\chi - 1)(\chi - 1 - 1)(-6) + (\chi - 1)(\chi - 1 - 1)(\chi - 2 - 1)$ = 26 - 8x + 8 + (3x - 3)(x - 1 - 1) + (x - 1)(x - 2)(x - 3)8= $26-8x+8-(3x-3)(x-2)+[x^2x-2x+2](x-3)_{x8}$ $= 26 - 8x + 8 - [3x^{2} - 3x - 6x + 6] + [x^{3} - x^{2} - 2x^{2} + 2x - 3x^{2} + 3x + 6x - 6] \times \frac{8}{3}$ $= 26 - 8x + 8 - 3x^{2} + 9x - 6 + [x^{3} - 6x^{2} + 11x - 6] \times \frac{8}{3}$ = $26-8x+8-3x^2+9x-6+[x^3-6x^2+1]x-6]x\frac{8}{3}$ $= 78 - 207 + 24 - 9x^2 + 27x - 18 + (x^3 - 6x^2 + 11x - 6)8 = 78$ $= 84 - 2u\chi - 9\chi^2 + 27\chi + 8\chi^3 - u8\chi^2 + 88\chi - u8$ yn = 8x - 57x2+91x+36 Put 2 = 5 $9(5) = 8(5)^{3} - 57(5)^{2} + 91(5) + 36$ blob (1 2001 = 8(125) -57(25) + 455 +36 mg 2 200000 000 1 = 1000 - 1425 tuss +36 manylog pritologisting :.415) = 66 forming the difference toble to 3rd with the 34 $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\$

From Newtons Forward interpolation formula yn= yn+η Δyot n(n-1). Δ2yo+ n(n-1)(n-2) Δ3yo+n(n-1)(n-2) 21 (n-3) Δ 水ツ $\eta = \frac{x - x_0}{h} = \frac{x - 20H}{9} + 0F + 8H$ $+(\frac{x-2}{2})(\frac{x-2}{2}-1)(\frac{x-2}{2}-1)(\frac{x-2}{2}-1)(\frac{x-2}{2}-1)(\frac{x-2}{2}-1)(\frac{x-2}{2}-1)(\frac{x-2}{2}-1)(\frac{x-2}{2}-2)(\frac{x-2}{2}-3)$ 18 $yn = \frac{x^2 - 6x + 8}{8} - \left[x^3 - 2x^2 - ux^2 + 8x - 6x^2 + 12x + 2ux - u8\right]$ 0)(120+24-6x3-8x3+48x2-2x3+12x+16x2-96x-4x3 + 24x2+32x2+ 192x +8x2-48x-64x+404 $4n = \frac{\chi^2 - 6\chi + 8}{8} - \left[\chi^3 - 12\chi^2 + uu\chi - u8\right] + \chi - 20\chi^3 + uu\chi + uoy = \frac{132}{36}$ 9n = x36x+8 = x3+12x2-uux+48 + x420x3+uux +404 40 = 8x 3 u8x+64 - ux3+ u8x2-176x+192+x420x3+uux+uqy 24-16x3+48x2 \$ 180x +666 plan stable 70.04-224 180

Date:) find the no-of students from the tollowing data tolally who secured masks not more than us 36 Marks 30-40 40-50 50-60 60-70 70-80 35 + 48 + 70 + 40 + 22 NO of Students Difference table No. of 1st and 3rd + 4th Morks (x) (below) Studentsly) 35 48 40 50 215 80 From Newton's Forward interpolation formula yn= yo +nayo +ncn-1) ayo +ncn-1)cn-2)23yo+ncn-1)cn-2)cn 21 31 41 24y [8n+16-19-16] $9n - \frac{1}{h} = \frac{x - x_0}{h}$; $x = \frac{x - x_0}{h}$; $x = \frac{1}{2} = 0.5$ 965 = 35 + (0.5)(48) + (0.5)(0.5 - 1) = 11 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 2) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5 - 1)(0.5 - 1)(0.5 - 1) = 21 + (0.5)(0.5 - 1)(0.5467= 35 + 24-4 2.75 + (0.5) (-0.5) (-1.5) (26) + (0.5) (0.5) (-2.5) (-2.5) X8 Yes 35+24-2.75 - 3.25 - 2.5 ... No. of Students who secured below us marks = 50.5 = 51 (approximate)

```
PP) No of students in between 40and us =
    No. of Students secured 45 marks - No. of students
    secured 40 morks above 45
             = 51-35
                                  =215-51
37 find the no. of men getting the wages between
  RS-10 and Rs-15 from the following table wages 0-10 10-20 20-30 30-40
                + 30 E + 1 35 + 42
  Difference Toble
       x (below) y
      10
      20
                11.6
  From Newtons Forward interpolation formulae
      40
  In= yo+n2yo+ncn-1)22yo+ncn-1)1n-2)23yo+

\eta = \frac{x - x_0}{h} \qquad x = 15 \quad ; \quad x_0 = 10 \quad ; \quad h = 10 \quad ; \\
15 - 10 = \frac{5}{10} = \frac{1}{2} = 0.5

  4(15) = 9 +39 (0.5) + (0.5)(0.5-1) 5 + (0.5)(0.5-1.)(0.5-2) 2
           9+ 15.0 + (0.5) (-0.5), 5 + (0.5) (-0.5) (-1.5)
    = 9+15-4.625+0.125
y(15) = 23.5
 .. No of men got the wages below Rs.15 = 23.5
                  = 2u Capproxemately ou = x 8u = x
     the wages in between Rs 10 and Rs: 15 1 ole - N
(11-31) (NO:0f me # who got below Rs:15 - below Rs:10
```

```
Using Newtons Backward interpolation formula, find
                                 e-1.9 from the following table
                                      x: 1 1.25 1.5 1.775 mort (8)7 stugmo)
                        Ye-x: 0.3679 0.2865 0.2231 0.1738 0.1353
                                   Pisserence table

\chi \quad ye^{-\chi}

1 \quad 0.3679 \quad -0.08321 \quad 0.018

1.25 \quad 0.2865 \quad -0.0634 \quad 0.0141

1.5 \quad 0.2231 \quad -0.043

1.75 \quad 0.1738 \quad -0.0385

2 \quad 0.1353 \quad -0.0385

solul Difference toble
                    2 0.1353 \int -0.0385

From Newton's Backword Interpolation formula

Yn= y_0 + 0 y_0 + \frac{1}{2} y_0 + \frac{1}
         y_{nq} = 0.1353 + (-0.4)(-0.03854) + (-0.4)(-0.41)(0.0108)
\frac{(-0.4)(-0.41)(-0.41)}{(-0.41)(-0.41)(-0.41)(-0.41)(-0.41)}
\frac{1.2}{(-0.4)(-0.41)(-0.41)(-0.41)}
\frac{1.2.3}{(-0.4)(-0.41)(-0.41)(-0.41)(-0.41)(-0.41)}
                              Cyn = 0.1353 + 0.0154 +6. 264x10-3-8.0048x10-4
                                                                                                                                                          8x218.3.6756) 0.021- FEZ = NE
```

```
19.9= 0.13797614 = 0.138

41. Find the cos(25) and cos(75') from the following data.

41. Find the cos(25) and cos(75') from the following data.

41. Find the cos(25) and cos(75') from the following data.

42. Using Newton's formulae tend the value of y and x=36 from the lateral of y and x=36 from the lateral
                                                                   77.9- 0.1353 +0.0154-0.00 $134 +0.000 2112+0.0000 2496
          42. Using Newton's dota not object the browned and way the following dota not object to browned and way 2: 21 25 292 133 37 15.5 pt (14 m) 1 pt (17.8 17.1 16.3 15.5 pt (14 m) 1 pt (14 m)
                41. 10 0.9848 -0.005 -0.0286 0.0023 0.0008 -0.003 0.0008 -0.003 0.0008 -0.003 0.0008 0.0003 0.0008 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
                      Newton's Forward Interpolation Formula
                                     yn=y0+ nay0+ n(n-1) α2y0+ n(n-1)(n-2) α3y0+ n(n-1)(n-2)

31

41
                                     1 + n(n-1)(n-2)(n-3)(n-4) (25yo+n(n-1)(n-2)(n-3)(n-4)
                                                                 +n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(27y61-80)
                                     n = \frac{x - x_0}{h}; x = 25; x_0 = 10; h = 10; h = 10; x_0 = 10; x
                          4n=0.9848+1.5(-0.0451)+1.5(1.5-1)-(-0.0286)+(1.5)(1.5-1)
(1.5-2) 0.002
                    +(1.5)(1.5-1)(1.5-2)(1.5-3) 0.0008+(1.5)(1.5-1)(1.5-2)(1.5-3)(1.5-4)
                                                                                                                                                                                                                                                                                                                                                                                   lus. (-0.0003)
                                                                                                                                                                                     24
                                                                                       + (1.5)(1.5-1)(1.5-2)(1.5-3)(1.5-4)(1.5-5)(0.0006)
                                                                                               + (1.5)(1.5-1)(1.5-2)(1.5-3)(1.5-4)(1.5-5)(1.5-6) | 5040
                                                                                                                                                                                                                                                                                                                                                                                 (-0.0016)
```

```
yn = 0.9848 - 0.06765 - 0.02145 - 0.0625x0.0023
                  +0.023.4375x0.0008 + 7.8125 x10-4x0.0003+.
                    +6.510416667 X10-5 X0.0006 +4.6502976 19X10-6 X0.0016
         4n = 0.9848 - 0.06765 - 0.010725 - 0.00014375+0.0000$875
                      +0.000000234375 +0.0000000 390625 +0.00000000744047619
 4105(25) - 0.9063002809
      Newtons Backward Interpolation formulae.
      y_n = y_n + n \nabla y_n + n \frac{(n+1)}{3!} \nabla^2 y_n + n \frac{(n+1)(n+2)}{3!} \nabla^3 y_n + n \frac{(n+1)(n+2)(n+3)}{4!}
               ++ n(n+1)(n+2)(n+3)(n+u) + Syn + n(n+1)(n+2)(n+3)(n+u)(n+5)
                   + n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) +74n
 \int_{0.9848}^{7} \frac{1}{h} = \frac{x - x_0}{h}; \quad x = \frac{7}{75}, \quad x_0 = 80; \quad h = 10 \quad n = \frac{75 - 80}{10} = \frac{-5}{10} = 0.5
0.9848 + (-0.5)(-0.0451) + (-0.5)(-0.5+1)(-0.0286)
               +(-0.5)(-0.5+1)(-0.5+2)x0.0023 +(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)
                +(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+4)(-0.0003)
   120
+1-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+4)(-0.5+5) x0.0006
within + (-0.5) (-0.5+1) (-0.5+2) (-0.5+3) (-0.5+4) (-0.5+5) (-0.5+6) (-0.00)

the
  brockets
 y_{0} = 0.98u8 + 0.02255 + 0.00715 + 0.0008625 - 0.00075 + 0.00098u37
                     - 0.008859375 + 0.1299375
cos(75) = 0.9848 +0.02255 + 0.003575 + 0.00014375 - 0.00003125
                           + 0.00000 8203125 - 0.0000123046875 + 0.00002578125
= 0.1727 + (-0.5)(-0.1693) + (-0.5)(-0.5+1)(-0.0113)
         + (-0.5)(-0.5+1)(-0.5+2)(0.0039)+(-0.5)(-0.5+1)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+1)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2)(-0.5+2
           +(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+u)(-0.0013)
        + (-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+4) (-0.5+5)(-0.001)
```

```
Legranges Interpolation Formula
         Consider y=f(x) be the given function. x takes the values xo, x,
        X2, X3, Xu, --- the corresponding y volues are yo, 4,, 42, 43, yu, ---- mespectively. Then
     y(x) = \frac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)}{(x_0-x_0)(x_0-x_1)(x_0-x_3)(x_0-x_4)} y_0 + \frac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)(x_1-x_4)}
             + \frac{(\chi_{-}\chi_{0})(\chi_{-}\chi_{1})(\chi_{-}\chi_{3})(\chi_{-}\chi_{4})}{(\chi_{2}-\chi_{0})(\chi_{2}-\chi_{1})(\chi_{2}-\chi_{3})(\chi_{2}-\chi_{4})} y_{2} + \frac{(\chi_{-}\chi_{0})(\chi_{-}\chi_{1})(\chi_{3}-\chi_{1})(\chi_{3}-\chi_{2})(\chi_{3}-\chi_{4})}{(\chi_{3}-\chi_{0})(\chi_{3}-\chi_{1})(\chi_{3}-\chi_{2})(\chi_{3}-\chi_{4})}
              (74-70)(x-71)(x-72)(x-x3)
 1. table. 2 5 7 10 12
Dote
     By Legranges interpolation formula exert
Solu) y(x) = (x-x_1)(x-x_2)(x-x_3)(x-x_4) y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)(x_0-x_4)} y_0 + \frac{(x_1-x_0)(x_1-x_2)(x_1-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}
 +(x-x_0)(x-x_1)(x+x_3)(x-x_4) y_2+(x-x_0)(x-x_1)(x-x_2)(x-x_4)
 (12-20)(22-21)(22-23)(22-24) (23-20)(23-21)(23-22)(23-24)
Jumpod + (2-20)(2-21)(2-22)(2-23) yy

\begin{cases}
(3u-x_0)(3u-x_1)(3u-x_2)(3u-x_3) \\
(46) = \frac{(6-5)(6-7)(6-10)(6-12)}{(2-5)(2-7)(2-10)(2-12)} \cdot 18 + \frac{(6-2)(6-7)(6-10)(6-12)}{(5-2)(5-7)(5-10)(5-12)}
\end{cases}

          + (6-2)(6-5)(6-10)(6-12) 449 + (6-2)(6-5)(6-7)(6-12)
               (7-9)(7-5)(7-10)(7-12) (10-2)(10-5)(10-7)(10-12)
          + (6-2)(6-5)(6-7)(6-10)
               (12-27(12-5)(12-7)(12-10)
     y(1) = \frac{1(-1)(-u)(-6)}{(-3)(-5)(-8)(-10)} \times 18 + \frac{4(-1)(-u)(-6)}{3(-2)(-5)(-3)} \times 180
                     (-3) (-5)(-8)(-10) 3(-2)(-5)(-+)
+ 4(1)(-4)(-6) * 448 + (4)(1)(-1)(-6) * 10.7.5.2
```

Scanned with CamScanne

$$|| \frac{1}{4} \frac{1}{4} \frac{1}{6} \frac{1}{6} \frac{1}{150} || \frac{1}{150} \frac{1}{1$$

y(10)2 44 $f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x-x_3)} y_1$ $\frac{+(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$ $\frac{7}{(0-1)(0-2)(0-5)} 2 + (x-0)(x-2)(x-5) 3$ + (x-0)(x-2)(x-5) 12+(x-0)(x-1)(x-12) 147 (2-0)(2-1)(2-5) (5-0)(5-1)(5-2) wor = (2-1)(2-2)(x-5) & +x.(2-2)(x-5) 3 (1-1)(-2)(-5) + 2/x-1)(x-5) 182 + 2(x-1)(2-2) 147
2.1.1-8) 5(4)(3) $= \frac{(x-1)(x-2)(x-5)}{5} + \frac{x(x-2)(x-5)}{5} \times 3$ + x(x-1)(x-5)x2 + x(x-1)(x-2)x1u7 $= (x^2x-2x+2)(x-5) + (x^2+2x)(x-5)x3$ - (x2-x)(x-5) 2) + (x2-x)(x-2)x+u7 $= \frac{1}{2} \left[\frac{1}{3} \frac{3^2 - 2^2 + 2x - 5x^2 + 5x + 10x - 10}{5} \right] = \frac{1}{5}$ $+ \left[\frac{x^{3} - 2x^{2} - 5x^{2} + 10x}{4} \right] \frac{3}{5} - \left[\frac{x^{3} - x^{2} - 5x^{2} + 5x}{7} \right]$ $+ \left[\frac{x^{3} - x^{2} - 2x^{2} + 2x}{60} \right] \times 10^{2}$

```
= - \left[ \frac{\chi^3 - 8\chi^2 + 17\chi - 10}{4} \right] + \left[ \frac{\chi^3 - 7\chi^2 + 10\chi}{4} \right] = \left[ \frac{\chi^3 - 6\chi^2 + 5\chi}{4} \right]
                                                                                                                                                                           3×3-21×2+30× - 2×3+12×2-10×
                                                                                                                                                                   4923-14722+982
                                                                          -ux3+32x2-68x+40+15x2 105x2+150x-40x3+240x2-200x
                                                                                                                                                                                                                                                           X-18 + KEB -
                                                                                30x + 20x 2-20x +40
                                                                                                                                    interpolating polynomial for the given
  4. fond the begranges in
        f(x) = \frac{(\chi - \chi_1)(\chi - \chi_2)(\chi - \chi_3)}{(\chi_0 - \chi_1)(\chi_0 - \chi_2)(\chi_0 - \chi_3)} y_0 + \frac{(\chi - \chi_0)(\chi - \chi_2)(\chi_1 - \chi_3)}{(\chi_1 - \chi_0)(\chi_1 - \chi_2)(\chi_1 - \chi_3)} y_1 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi - \chi_3)}{(\chi_2 - \chi_1)(\chi_2 - \chi_3)} y_2 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_2 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_2 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_2 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_1)(\chi_3 - \chi_2)}{(\chi_3 - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_2)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_1)(\chi_3 - \chi_1)}{(\chi_3 - \chi_1)(\chi_3 - \chi_1)(\chi_3 - \chi_1)} y_3 + \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_3 - \chi_1)}{(\chi_3 - \chi_1)(\chi_3 - \chi_1)(\chi_3 - \chi_1)} y_3 + \frac{(\chi - \chi_0)(\chi_3 - \chi_1)(\chi_3 - \chi_1)}{(\chi_3 - \chi_1)(\chi_3 - \chi_1)} y_3 + \frac{(\chi - \chi_0)(\chi_1 - \chi_1)(\chi_1 - \chi_1)}{(\chi_3 - \chi_1)(\chi_1 - \chi_1)(\chi_1 - \chi_1)} y_3 + \frac{(\chi - \chi_0)(\chi_1 - \chi_1)(\chi_1 - \chi_1)}{(\chi_1 - \chi_1)(\chi_1 - \chi_1)} y_3 + \frac{(\chi - \chi_1)(\chi_1 - \chi_1)}{(\chi_1 - \chi_1)(\chi_1 - \chi_1)} y_3 + \frac{(\chi - \chi_1)(\chi_1 - \chi_1)}{(\chi_1 - \chi_1)(\chi_1 - \chi_1)} y_3 + \frac{(\chi - \chi_1)(\chi_1 - \chi_1)(\chi_1 - \chi_1)}{(\chi_1 - \chi_1)(\chi_1 - \chi_1)} y_3 + \frac{(\chi - \chi_1)(\chi_1 - \chi_1)}
   50/4/
f(x) = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} + \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}
                                                      + (11-1) (12-2) (12-4) 27 + (12-1) (12-2) (12-3) 64
                                                                      (3-1) (3-2) (3-4) [ u-1) (u-2) (u-3)
                                                               (2-2)(2-3)(2-4) + (2-1)(2-3)(2-4) & 4.
                 f(x)
                                                                    + (x-1)(x-2)(x-u) 27 + (x-1)(x-2)(x-3) 64
                                                         = (x=2x-3x+6)(x-4)+(x=x-3x+3)(x-4)4
                                                                              +(1-7-2x+2)(1-4) 27+(12-x-2x+2)(x-3)32
                                                                                                                     www.Jntufastupdates.com 3
```

```
=(x25x+6)(x-u)+ (x2ux+3)(x-3) 32
                       -4(x^{2}+3x+2)(x-4) 27 + (x^{2}+3x+2)(x-3) 32
             [= -[x3-5x2+67-4x2+20x-24]+[x3-4x2+3x-3x412x
                    -\frac{1}{12}\frac{3}{3}x^{2}+2x+ux^{2}+12x-8727+[x^{3}-3x^{2}+2x-3x^{2}+9x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}+2x-3x^{2}
            = 123+5x2-6x+ux2-20x+2y + ux3-16x2+127-12x2+u8x
               -2723+81x2+54x+108x2-3247+216+32x3-96x2+64x
                         \frac{2}{-x^3+5x^2-6x+ux^2-20x+24+2ux^3-96x^2+72x-72x^2+}
  wrong
                                 288x +216 -81x3+243x2-162x+324x2-972x+648
                      +64x3-192x2+28x-192x2+576x-384
                                 6x3] lormonylog postologrator
        = -[x^3-7x^2+12x-2x^2+14n-24]+24[x^3-7x^2+12n-x^2+7x-1]
                - 27×3 (x3-6x2+8x-x2+6x-8)+6u(x3-5x2+6x-x2+5x
         = -[x39x2+26x-2u]+24, [x3-8x2+19x-12]-27-1x3-7x
                 Hux-8] +6ulx3-6x++11x-6)
             = +[x3+9x2-26x+24]+24x3-192x2+456x-288-81x3
                        +567x2-11342 +648+64x3-38422+704x-384
                 = 1 [6x3+0+0+0] = 23 | W-r)(2-r)
           Using Legranges Interpolation formula to fit a polynomial to the following data

1: -1 0 2 3

4z: -8 3 12 12

And also find the value U1
5.
                        also utinds the value uz (1) (1)
                      25 (8-21/11/2-12-12) + EE
```

By beginness interpolation formulae

$$u_{\chi} = \frac{(1-x_1)(2-x_2)(2-x_3)}{(2_0-x_1)(2_0-x_2)(2_0-x_3)} \underbrace{u_{\chi} + \frac{(x-x_0)(x-x_3)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}} \underbrace{u_{\chi} + \frac{(x-x_0)(x_2-x_3)(x_2-x_3)}{(x_3-x_0)(x_2-x_3)(x_2-x_3)}} \underbrace{u_{\chi} + \frac{(x-x_0)(x-x_1)(x-x_1)}{(x_3-x_0)(x_2-x_1)(x_2-x_3)}} \underbrace{u_{\chi} + \frac{(x-x_0)(x-x_1)(x-x_1)}{(x_3-x_0)(x_2-x_1)(x_2-x_3)}} \underbrace{u_{\chi} + \frac{(x-x_0)(x-x_1)(x-x_1)}{(x_3-x_0)(x_2-x_1)(x_1-x_2)}} \underbrace{u_{\chi} + \frac{(x-x_0)(x-x_1)(x-x_1)}{(x_1-x_0)(x-x_1)}} \underbrace{u_{\chi} + \frac{(x+x_0)(x-x_1)(x-x_1)}{(x_1-x_0)(x-x_1)}} \underbrace{u_{\chi} + \frac{(x+x_0)(x-x_1)}{(x_1-x_0)(x-x_1)}} \underbrace{u_{\chi} + \frac{(x+x_0)(x-x_1)(x-x_1)}{(x_1-x_0)(x-x_1)}} \underbrace{u_{\chi} + \frac{(x+x_0)(x-x_1)}{(x_1-x_0)(x-x_1)}} \underbrace{u_{\chi} + \frac{(x+x_0)(x-x_1)}{(x_1-x_0)}$$

```
agte Central Differences
             Gous- Forward Interpolating Formulae
     yn = yo+ nayo + nen-1) a2y + en+1) nen-1) a3y -1 + (n+1) nen-1) en-2
                    (n+2)(n+1) n(n-1)(n-2) (15y-2+--
            Grows - Backword Interpolating Formulae
        9n= yot nay 1+ (n+1)n. 22y + (n+1)n(n-1)23y + (n+2)(n+1) n(n+1)
                          14y-2 +(n+2)(n+1)n(n-1)cn-2) 15y-3+2
  f(x): 1 & 27 64 Atherence table why we should should be should be should should be should be should should be should
                   gy lo 1st 2nd 3rd
          27 4, 19 40
      Grows forward interpolating formula
       yn= yotn 2yo (+ncn-1) Δ2y-1 + (n+1) ncn-1) 23y-1
                     n = \frac{x - x_0}{h} = x_0 = 2.6  x = 2.5 ; h = 1
                       4n= 8+(0.5)(19)+(0.5)(0.5-1) 12+(0.5+1)(0.5)(0.5-1)6
                    = 8 + 9.8 + (0.5)(-0.5) 126 + (1.5)(0.5)(-0.5) xxx
                        = 8+9.5-57.75 - 0:375 DELLE E(2.0) =
             yn.s) = 15.625 ... a.d.
```

```
2. From the tollowing table find y when x=38 2: 30 35: 40 45 50 Asylerence table y: 15.9 14.9 14.1 13.3 12.5 Asylerence table
                               3rd wthee x ox
        410) (1 +1st 0112) + (110) (1-20)(20) +1500 (20) +21 (01)
   30 × 1 15.9 4-1 -1 4-1 0.2 y-1 -0.2 y-1 0.2 y-1
 Un 14-14, -0.8 40 0 40 + 3860 0 -38 40 0 + 310 -31 = (EE)4.
 By applying Grauss forward interpolating formula
   yn= yo+ nayo +nin-1) a2y-1 +(n+1)nin-1)23y-1+(n+1)nin-1)1n-2).
   \eta = \frac{x-x_0}{h}; x = 38 x_0 = 35; h = 5
      14.9 + (0.6)(-0.8) + (0.6)(0.6-1)(0.2) + (0.6+1)(0.6)(0.6-1)(-0.2)
        [+(0.6+1)(0.6)(0.6-1)(0.6-2)(0.2)]
   41.0 -0.024 + 0.0128 + 60.00]
   using Graws forward interpolating formulae we find fis.3)
From the following data
   from the following dota
                        4 5 Bifference toble we will
                                           In Fox Grands
                                                 forward ny
         17.3 15.1 15. 14.5, 14 3rdx
                         and
   f(x)
                                                 8-x backward
    2
        15.3 4-2-0.2 4-2 (0.3 4-2) (-0.5 4-2 2.5
        15.14-1-0.14-18-0.6 481 +0.61 4-1
    22-1
          14.5. +0.5 40 x -0.0 40 ( ) + FC XP +
```

```
By applying Grows forward interpolating formulae
      yn = yo+n Δyo + ncn-1) Δ2y-1+ cn+1) α3y-1+(n+1) αλy-1+(n+1) αλy-1
             N = \frac{x - x_0}{h} \quad x = 3.3; x_0 = 3; \quad h = 1; n = \frac{3.3 - 3}{1} = 0.3
  4(3.3)^{2} 15 + 0.3(-0.5) + \frac{(0.3)(0.3-1)}{21}(-0.4) + \frac{(0.3+1)(0.3)(0.3-1)}{21}
                                  + (03+1)(03)(03-1)(03-2) x0.9
 413:3)= 15-0.15+0.042(-0.0286+0.0286)-0.0182+0.0580125
             = 15-0.15 +0.042-0.182 +0.01740375 = 14.89120375
    413.3) E 14.88656 14.9318125 7.
4. find the polynomial which quit the data in the following table using Graws forward formula
                                                                                    5 207:
                          X
solul Difference table and 3rd wth
                                                                                                                                               108 174 88 - X - 0x - X - 1
                               3 6 18^{(c.0)(c-0.0)(a-0.0)(a-0.0)(a+0.0)+3}

5 24 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.
                6 6 9 108 su
                                                                                         66
                                                                                 Newtons forward formula procured sword parso
                                                          174
                                                                                                                                           from the following dota
                  yn= yotn 2yot nun=1) 22yot.
                                 10= x-x0 X0= 3; X0= x H hc=12 = 371.
                                     v = \sqrt{3-3}
                          y_{n} = 6 + \left(\frac{2-3}{2}\right) 18^{9} + \left(\frac{2-3}{2}\right) \left(\frac{2-3}{2}-1\right) 16^{8}
= 6 + 9x - 27 + \left(\frac{2-3}{2}\right) \left(\frac{x-5}{2}\right) x \frac{3}{16} \frac{4^{2}}{x}
                                                        = 6+9x-27+[2-3][2-5]2
                                                         = 6+92-27+[22-32-52+15]2
                                                                =-Q1+9x+2x2-6x-10x+30
```

```
The By using Gays Backward interpolating formulae find
the volue of y and 2 = 3.3 from the Hollowing dota
                       15. pos 14.5 54 0 15.00 th
          y 15.3 15.800.0 See of sport south 8.1
oly Difference table state and I spossible sport of priphago pa
1 x_{-2} 15.3 y_{-2} -0.2 y_{-1} -0.2 y_{-1} -0.5 y_{-1} 0.9 y_{-2} 0.9 y_{-2} 0.9 y_{-2} 15.1 y_{-1} -0.1 y_{-1} -0.4 y_{-1} +0.4 y_{-1} 370 15.5 y_{0} 0.5 y_{0} 0.5 y_{0} 6 y_{0} 40.4 y_{-1} 6 y_{-1} 7 y_{-1} 10.1 y_{-1} 10.2 y_{-1} 
           y_{33}=15+(0.3)(10.1)+\frac{10.3+1)(0.3)}{21}(-0.4)+\frac{10.3+1)(0.3)(0.3-1)}{31}
                                   +(0·3+2)(0·3+1)(0·3)(0·3-1)(+0·9)
             [yn = 15 + 4.53 - 0.0195 + 0.0182]
              46.3= 15-0.03-0.078+0.02275-0.02354625
                                                                                table find the value of y when X = 1.35
                  40.5- 14.89120375
                   4(3.3) = 14.8912
                                                                                                    1.6 1.8 2
                 from the following
                                                                                                         why we used
     6
                                                                                  1.4
                                                                                                   0.336 0.992
                                                          1.2
                     x: 1
                                                                                                                   Growns backward.
                                                                                  -0.016
                      y: 0.0 -0.112
```

```
W: Numerical Integration

6 The Solutions of Ordinary B

Orderential Equation.
                                                                                                                                                                                                                                                                                                            Differential Equation.
                          There are three nules
                          1. Tropizordal Rule
                                2. Simpson 1 nulc
   In Numerical integration, we solve the given problem by using the above rules.
      Trapizoidol Rule: x 8.0 = gt : BIMPO
                                              30idol Rule: x (yotyn) + 2(y,+y2+y3+ -- 50) - 00 (yotyn) + 2(y,+y2+y3+ -- 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - 50) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+4) - (+2+
           Simpson & Rule ( 190+4) 4. [ (yotyn) +4 (yity3 of 45 t (2041) ] -
                                                                                                                                                              +2/42+44+46+[(=188.1)]
                Simpson 3 Rule
                                                        \int_{0}^{b} y \, dx = \frac{3h}{8} \left[ (y_0 + y_n) + 3(y_1 + y_2 + y_u + y_5 + y_7 + y_8 + -- -) \right]
     where he was + convert the given cunve the beat had + y = f(x) is the given cunve of the beat and + y = f(x) is the given cunve of the plant of the 
\frac{1. \text{ Tromon}}{21 \text{ np.0}} = \frac{0}{1+x^{2}} = \frac{0}{1+x^{2}
                                                                                                                                                                                                                                                         12 [1.5 +6.3248 +1.6]
                                                 x_0 = \alpha = 0

y_0 = f(x_0) = f(x_0) = \frac{1}{140^2} = \frac{1}{8020.00}
                                                                        y_0 = r(x_0)

y_1 = x_0 + h

y_1 = f(x_1)

y_2 = f(x_1)

y_3 = \frac{1}{1+x_1}

y_4 = \frac{1}{1+x_2}

y_5 = \frac{1}{1+x_3}

y_5 = \frac{1}{1+x_4}

y_5 = \frac{1}{1+x_5}
```

Sympson
$$\frac{3}{8}$$
 Rule $\mu_1 = \frac{3}{4}$ $(y_0 + y_0) + 3(y_1 + y_2) + 3(y_3)$ $(y_0 + y_0) + 3(y_1 + y_2) + 3(y_3)$ $(y_0 + y_0) + 3(y_0 + y_0) + 3(y_0 + y_0)$ $(y_0 + y_0) + 3(y_0 + y_0) + 3(y_0 + y_0)$ $(y_0 + y_0) +$

3. Evoluate
$$\int \frac{1}{1+1} dx$$
, $n = 5$
 $y = f(x) = \frac{1}{x+1}$
 $x_0 = 0$
 $y = f(x)$
 $y = f(x)$
 $y = f(x)$
 $y = 0$
 $y = f(x)$
 $y = 0$
 $y = 0$

By Simpson
$$\frac{1}{3}$$
 rule

$$\begin{array}{l}
b \ y \ dx = \frac{1}{3} \left[\frac{1}{3}y_0 + y_5 \right] + \frac{1}{3} \left[\frac{1}{3}y_1 + y_3 \right] + \frac{1}{3} \left[\frac{1}{3}y_2 + y_4 \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3}y_4 + \frac{1}{3}y_4 \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3}y_4 + \frac{1}{3}y_4 \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3}y_4 + \frac{1}{3}y_4 \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3}y_4 + \frac{1}{3}y_4 \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} + \frac{1}{3} \right] + \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \\
= \frac{612}{3} \left[\frac{1}{1} + \frac{1}{3} +$$

$$x_{3} = x_{3} + h$$

$$y_{3} = f(x_{3})$$

$$x_{1} = x_{2} + h$$

$$y_{2} = f(x_{4})$$

$$x_{2} = x_{3} + h$$

$$y_{3} = f(x_{4})$$

$$y_{4} = f(x_{4})$$

$$y_{5} = f(x_{5})$$

$$y_{6} = 0.1428$$

$$y_{7} = f(x_{7})$$

$$y_{8} = f(x_{1})$$

$$y_{9} = f(x_{1})$$

$$y_{1} = f(x_{2})$$

$$y_{1} = f(x_{1})$$

$$y_{2} = f(x_{2})$$

$$y_{3} = f(x_{1})$$

$$y_{4} = f(x_{1})$$

$$y_{5} = f(x_{2})$$

$$y_{5} =$$

```
1 by dx = 3h [ (4,+46) +3 (4,+42+4th) +2 (43) $
    = 3(1) [(1+0.1428)+3(0.5+0.3334+0.2+0.1667)+26029
                                       = 0.375[1.1428 +3(1.2001) +0.5
                                        = 0.375 [1.1428 + 3.6003 +0.5]
                                         = 0.375 [5.2431] (2r) = 2r
   1.9661625 J 261
5. Evaluate 14 ex dx given e = 2.72 e² = 7.39 e³ = 20.09
                        y = f(x) = e^{x}, n = u, a = 0, b = 4 
 h = \frac{b-a}{n} = \frac{u-o}{u} = 1 
 y = f(x) = e^{x}, n = u, a = 0, b = 4 
 h = \frac{b-a}{n} = \frac{u-o}{u} = 1 
             e4= 54.6 ; n=4
\begin{cases} y_0 = a = 0 & (y_0 = f(x_0)) = e^0 = 1 \\ (f_0 = x_1 = +x_0 + x_0 + x_0 + x_0 + x_0 + x_0) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = e^0 = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 & (f_0 = f(x_0)) = 1 \\ = 1 &
                 x_2 = x_1 + h y_2 = f(x_2)
= 1+1.
= 9. = e^{x_2} = e^2 = 7.39
                                                          y3=f(x3) 000 & + 8541 1
                  X3 = X2+h
                                                                      =e^{73}=e^3=20.09
                                                        yy= flxu)
   34 = 13+1

=3+1

=4

20=0; y_0=1; y_1=2.72 3y_2=7.39, y_3=20.09 ; y_4=54 y_5=4
                     14 = 13+h
                                                                                                                                                                                                                   2)10 (0.5
 ) Trapizoidal Rule

[by dx = \frac{h}{2} [lyo+yu) + 2ly, +y2+y3)]
                                        = 1 [(1+54.6)+2(2.72+7-39+20.09)]=
                              = 0.5 [$9.6 +2(30.2)]
                                        = 0.5 [55.6 +60.4]
                                                                                                                                                          (8 Simpson & Rule
                                            = 0.5[116]
                                              258
```

2)
$$3^{9}mpson \frac{1}{3} \text{ Yule:}$$

$$\frac{1}{3} y dx = \frac{h}{3} \left[(1+su.6) + 4 (13.72+20.09) + 2(17.39) \right]$$

$$= \frac{1}{3} \left[(1+su.6) + 4 (13.72+20.09) + 2(17.39) \right]$$

$$= \frac{1}{3} \left[(1+su.6) + 4 (13.72+20.09) + 2(17.39) \right]$$

$$= \frac{1}{3} \left[(1+su.6) + 3 (10.74) + 2 (10.94) \right]$$

$$= \frac{3}{8} \left[(14+su.6) + 3 (12.72+7.39) + 2(20.09) \right]$$

$$= \frac{3}{8} \left[(1+su.6) + 3 (10.74) + 2(20.09) \right]$$

$$= \frac{3}{8} \left[(1+su.6) + 3 (10.74) + 2(20.09) \right]$$

$$= \frac{3}{8} \left[(1+su.6) + 3 (10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.4) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 2(20.09) \right]$$

$$= 0.375 \left[(15.6) + 3(10.74) + 3(20.74) + 3(20.74) + 3(20.74) + 3(20.74) + 3(20.74) + 3(20.74) + 3$$

J Tropisoidal Rule

$$s=\int_{0}^{12} v dt = \frac{1}{9} \left[(y_{0} + y_{0}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5}) + 2(y_{2} + y_{4}) \right]$$
 $= 2 \left[(0+0) + 2(2+2+30+2+18+4) \right]$
 $= 2 \left[(0+0) + 2(2+2+30+2+18+4) \right]$
 $= 2 \left[(0+0) + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4}) \right]$
 $= \frac{1}{3} \left[(0+0) + 4(2+2+2+4+7) + 2(3+18) \right]$
 $= \frac{1}{3} \left[(0+0) + 4(2+2+2+4+7) + 2(3+18) \right]$
 $= \frac{1}{3} \left[(2+4+96) \right]$
 $= \frac{1}{3} \left[(2+4+96) \right]$
 $= \frac{1}{3} \left[(2+4+96) \right]$
 $= \frac{1}{3} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+30+18+7) + 2(2+7) \right]$
 $= \frac{3}{4} \left[(0+0) + 3(2+$

Estimate the time taken to travel 60 m by using the Solul Sonce we know that the rate of change of displacement Ps called the velocity. called the vide y $dt = \frac{1}{\sqrt{ds}} ds$ $v = \frac{ds}{dt} = 0$ $t = \frac{1}{\sqrt{ds}} ds$

$$V = \frac{ds}{dt} \implies dt = \frac{1}{V} \frac{ds}{ds}$$

$$1 = \frac{1}{V} \frac{ds}{ds}$$

$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{7}} = \frac{0.0212(y_0)}{58} = \frac{1}{58} = 0.0172(y_0) = \frac{1}{64} = 0.0156(y_0)$$

$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} = 0.01534(y_0) = \frac{1}{\sqrt{5}} = 0.0164(y_0) = 0.0192(y_0)$$

$$\frac{1}{65} = 0.01534_{(y_3)}, \frac{1}{61} = 0.0104_{(y_u)}, \frac{1}{38} = 0.0263_{(y_k)}$$

1) Tropizoidal Rule

Trop: 30° dal Rule
$$5t=\int \frac{1}{2} d5 = \frac{h}{2} \left[(y_0 + y_6) + 2 l y_1 + y_2 + y_3 + y_4 + y_5) \right]$$

$$= \frac{10}{2} \left[(0.0212 + 0.0263) + 2 \left(0.0172 + 0.0196 + 0.0193 \right) \right]$$

$$+0.0164 + 0.0193$$

ethode
$$1 = 5 \left[(0.0075) + 2 \left(\frac{10.0075}{10.1676} \right) \right]$$
 and $\frac{10.0075}{10.1676} = 5 \left[(0.0075) + 0.1676 \right]$ and $\frac{10.0075}{10.1676} = \frac{10.0075}{10.1676} = \frac{10.0075}{1$

2) s sympson
$$\frac{1}{3}$$
 Rule
$$\begin{aligned}
& t = \int_{0}^{60} \frac{1}{4} ds &= \frac{3h}{3} \left[tyoty6 \right] + 4 tyity3 ty5 \right] + 2 tyity4 ty \\
& = 3 th \left[tyoty6 \right] + 4 tyity3 ty5 \right] + 4 to 0172 to 0154 \\
& = 3 th \left[tyoty6 \right] + 0.0212 to 0263 \right] + 4 to 0192 \right] \\
& + 0.0192 \right] \\
& + 2 to 0156 to 0.0164 \right] 0.0475
\end{aligned}$$

```
A grever is so meters wide. The depth y of the river of a distance 'x' from one bank is given by the following
                      20 30 40 50 60 70 80
    table
                       7 9 12 15 14
  find the approximate axea of the eross section of the
solul Sence we know that the cross section area of the given rever is
 ) By tropisoidal Rule.
     Jy dn = \frac{h}{2} [ (yot y8) + 2 (y, + y2 + y3 + yu+ y5 + y6 + y7)
          F 10 [(0+80)+2(10+20+30+40+50+60+70)*
             = 5(80+2(280)) = \frac{10}{2}[(0+3)+2(u+7+9+12+15+14)
                 5 [80 + 560] = 5 [3+2[69]]
                            = 5[3+138]
                = 5×640
                                    = 5[14] = 905 sq. unils
     \[ \langle y dz = \frac{h}{3} [lyo+y_8] + \ulu_1+y_3+y_5+y_7) + \ulu_1ly_2+y_4+y_6) \]
             = 18 [10+3)+4 (u+9+15+14)+2(7+12+14)]
            = \frac{10}{3} \left[ 3 + 4(42) + 2(33) \right]
              = 19 [3+144+66]
               =\frac{10}{3} x233 = 710 sq.units
```

(11 + 2 2 12 2 + 1) W + 2 (11) 8 + (81) 1 (8 1 8 x b)

3) Simpson
$$\frac{3}{8}$$
 Rule

$$\int_{0}^{1} y \, dx = \frac{3h}{8} \left[(y_{0}t + y_{8}) + 3(y_{1}+y_{2}t + y_{4}ty_{5} + y_{4}) + 2(y_{8}t + y_{6}) \right]$$

$$= \frac{3(10)}{8} \left[(0+3) + 3(4+9+12+15+8) + 2 \cdot (9+14) \right]$$

$$= \frac{30}{8} \left[3+3(4+6) + 2(23) \right]$$

$$= \frac{35}{8} \left[3+3(4+6) + 2(23) \right]$$

$$= \frac{35}{8} \left[3+3(4+6) + 2(23) \right]$$

$$= \frac{35}{8} \left[3+3(4+6) + 2(23) \right]$$

$$= \frac{3}{8} \left[3+3(4+6) + 2(23) \right]$$

$$= \frac{15}{4} \times 164$$

$$= \frac{15}{4} \times 164$$

$$= \frac{3}{8} \left[3+3(4+6) + 2(23) \right]$$

$$= \frac{3}{1} \left[3+138 + 46 \right]$$

$$= \frac$$

```
1) Trapszopdal Rule
[440+46) +2(41+42+43+44+45)]
       =\frac{1}{2}\left[(95.9+101.2u)+2(96.85+97.77+98.68+99.56\right]
                     + 100·u)]
       = 0.5 [ 197.14+ 2 ( 493.27)]
        = 0.5 [ 197.14+ 986.54] . + 28
       = 0.5 [ 1183.68] 81 | = (188) 2
     = 591.84
2) sympson it rd Rule
 1 Gixi dx = + h [lyo+y6) + uly1+y8+y5) +2 ly2+yu) amiz (8
  20 + 11 += 1 [ (95.9+101.24) +4 (96.85 +98.68 + 100.41)
                           +2.197.77 +99.56)]
  = 0.3333 [197 [14+4 (295.94) +2 (197.33)]
       = 0.3333 [ 197.14 + 1183 - 76 + 394.66)
 20 hornism = 0.3333 [ 1775.56)
             experiment, a quentification ==
3) sympson 3 Rule: 5.10
   JG(2) dx = 3h [ (40+46) +3(4)+42+44+45) +2(43) ] wolld
             =3 [ (95.9+101.24)+3 (96.85+97.77+9
                          + 100.41) +2(98-68)
             = 0.375 [197.14+3(394.59) + 2(98.68)]
             = 0.375 [197.14+1882.84 1183.77 + 19:
            1=000.375 [15768-27] ss
              =591.85125° FF.FF 28.0P
```

13 The speed of a train at varies times after leaving one station until it stops at another station are given in the 0 40 13 33 39.5 40 40 36 15 following toble speed: 0.5 1 1.5 2 find the distance between the two stations. solul sence we know that the rate of change of displacement es called velocity $\frac{ds}{dt} = v$ $\frac{ds}{ds} = v dt$ $3 = \int_{0}^{\infty} v dt$) Trapizordal Rule Judt = \frac{h}{2} [(y0+y8) + 2ly, +y2+y3+y4+y5+y6+y7)] 1888000 = 0.5 [(0+0) + 2 [13+33+39.5+ 40+40+36+15)] FP2100.0 = = 0.5 (2(216.5)) = 0.25 (1433) = 108.25 = 11 = (1)9 = 18 Simpson 3rd Rule Jvdt = \frac{h}{3}[(y_0+y_8)+u(y_1+y_3+y_5+y_7)+2(y_2+y_4+y_6)] = 0.5 [(0+0) + 4 (13+39.5+40+15) + 2(33+40+36)]= 0.466670.5[4(107.5)+2(109)].y)]. = 350 05 556 [430 + 218] (1500.0 +1)] [= 36. 3240= 108 + 15000.1] Just = 3h [190+98) +319,+92+94+95+97) +2(43+96)] 3) sampson 3 Rulc $=\frac{3(0.5)}{9}$ [foto) + 3(13+33+40+40+15) +2(39.5 +36)]

and prevalent
$$(1.0)^{-1} + 2(146.51)$$
 and $(1.0)^{-1} + 2(146.51)$ and

2)
$$simpson \frac{1}{3}id Rule.$$
 (2)

1) $y dx = \frac{1}{3} [(y_0 + y_0) + \mu(y_1 + y_3 + y_5) + \frac{1}{4} + y_2 + y_4)]$

= $\frac{1}{3} [(1 + 0.00071) + 4(0.5 + 0.0012195 + 0.001577)]$

= $\frac{1}{3} [(1 + 0.00071) + 4(0.513792) + 2(0.06274)]$

= $\frac{1}{3} [(1.00071 + 2.055168 + 0.125422]]$

= $\frac{1}{3} [(1.00071 + 2.055168 + 0.125422]]$

= $\frac{1}{3} [(1.00071 + 3.055168 + 0.125422]]$

= $\frac{1}{3} [(1 + 0.00071) + 3(0.5 + 0.05882 + 0.003891 + 0.001597)]$

= $0.375 [(1.00071 + 3(0.564308) + 2(0.012195)])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.00071 + 1.692924 + 0.02439])$

= $0.375 [(1.$

$$\begin{aligned}
 \chi_2 &= 7, \text{th} \\
 &= 0.25 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.21 + 0.25 \\
 &= 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 \\
 &= 0.25 + 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25 + 0.2222 \\
 &= 0.25$$

```
17. Evaluate 12 dx to three deemal devicing me range
                       anto ceght equal parts.
  y = f(x) = \frac{1}{1}
                         y = f(x) = \frac{1}{x^2 + x + 1}
x_0 = a = 0 \implies y_0 = \frac{1}{x_0^2 + x_0 + 1} = \frac{1}{x_0^2 + x_0^2 + x_0^2 + 1} = \frac{1}{x_0^
               y_1 = x_0 + h y_1 = \frac{1}{(0.25)^2 + (0.25) + 1} = \frac{1}{(0.25)^2 + (0.25) + 1}
                                              =0.2500 =
                           \chi_2 = \chi_1 + h \chi_2 = \frac{1}{\chi_2^2 + \chi_2 + 1} = \frac{1}{(0.5)^2 + 0.5 + 1} = \frac{1}{1.75} = 0.5714
               EJ 120.25 to .25
                            x_3 = x_2 + h y_3 = \frac{1}{x_3 + x_3 + 1} + \frac{1}{x_3}
                                          =0.75 = 0.4324 = 0.4324 = 0.4324 = 0.4324 = 0.4324
        2600.2u = 23 + h
= 0.33331
= 0.33331
= 1
+0.025 = 24u + h
= 1 + 0.25
= 1.25
41 = 1
= 1 + 0.25
= 1.25
                     \chi_6 = \chi_5 + h \chi_6 = \frac{1}{\chi_6^2 + \chi_6 + 1} = \frac{1}{(1.5)^2 + 1.5 + 1} = 1.25 + 0.25
= 1-75+0.25 PS 0) & + (EJOPE 0) H+ NS 0] -2.0 -
                59mpson 3 rd Rule ( 588 20+ 528821 + NS. 0 ) 300 =
                                                    = 0.5 [8.01245] = 0.00123 = 0.0012
```

$$\int_{0}^{2} y \, dx = \frac{h}{3} \left[ly_{0} + y_{0} + ly_{0} + y_{0} + y_{0$$

```
Simpson 3 Rule ( at the phone of a ship
          18 dx = 3h [(yo+yo) +uly, +yg+yg) +2 (yg+yo)
                              [ = 3(1) [ (0+0.000128) +4(0.5+0.0040+0.000319)
                                                                +2(0.0303+0.000975)
                                         = \frac{3}{8} \left[ 0.000128 + 4 \left( 0.504319 \right) + 2 \left( 0.031275 \right) \right]
                                             = 0.375[0.000128+ 2.017276 + 0.06255]
                       = 0.375 (2.079954)
                                         [=0.77998] Priso 40 Colors
                       = 3 [0+0.0077]+3[0.5+0.0606+0.0039+0.0015.70.0077
                                                                                                 +2[0.0122]
                           = 3 [0.0077 +3 (0.566) + 0.02uu]
= 3 [0.0077 + 1.698 to.0244]
                                                                                                                                          S. L. T. S. R. S. L. 
                               = 3 [1.7301]
= 5.1903 = 0.6087875

19. Evaluate of dx by using simpson 3rd Rule where hz0.2

19. Tond also find
    logge of that
                        greg. That

100.0 \int \frac{dx}{1+x} \frac{d}{2x+1} = \frac{2x}{2x+1} = \frac{2x}{2x+1} = \frac{2x}{2x+1}

1+1
  solul Girven that
      281600 put oftx 2td
                                        2=0, t=1+x=1+0=1
                                       x=1, +=1+1=2
                                                       Jax = 1° dt
```

$$= [logt], \frac{1}{1}$$

$$= log^{2} - log^{2}$$

$$= log^{2} - 0$$

By Simpson $\frac{1}{3}$ yd Rulc
$$\int \frac{1}{1+7} dx = \frac{1}{3} [ly_{0} + y_{5}] + 4 (y_{1} + y_{3}) + 2 (y_{2} + y_{u})]$$

$$h_{5} = 0.2$$

$$y = f(x) = \frac{1}{1+2}$$

$$x_{0} = \alpha = 0$$

$$x_{1} = x_{0} + 1$$

$$x_{2} = x_{1} + 1$$

$$x_{3} = x_{2} + 1$$

$$x_{1} = x_{2} + 1$$

$$x_{2} = x_{3} + 1$$

$$x_{2} = x_{3} + 1$$

$$x_{3} = x_{2} + 1$$

$$x_{4} = x_{3} + 1$$

$$x_{5} = x_{4} + 1$$

$$x_{5} = x_{4} + 1$$

$$x_{7} = x_{7} + 1$$

$$x_{1} = x_{7} + 1$$

$$x_{1} = x_{1} + 1$$

$$x_{2} = x_{3} + 1$$

$$x_{3} = x_{4} + 1$$

$$x_{4} = x_{5} + 1$$

$$x_{5} = x_{5} + 1$$

$$x_{7} = x_{7} + 1$$

$$x_{7} = x_{7} + 1$$

$$x_{7} = x_{7} + 1$$

$$x_{8} = x_{7} + 1$$

$$x_{1} = x_{1} + 1$$

$$x_{1} = x_{1} + 1$$

$$x_{2} = x_{3} + 1$$

$$x_{3} = x_{4} + 1$$

$$x_{1} = x_{2} + 1$$

$$x_{2} = x_{3} + 1$$

$$x_{3} = x_{4} + 1$$

$$x_{4} = x_{4} + 1$$

$$x_{5} = x_{4} + 1$$

$$x_{5} = x_{4} + 1$$

$$x_{5} = x_{4} + 1$$

$$x_{7} = x_{4} + 1$$

$$x_{7} = x_{4} + 1$$

$$x_{8} = x_{4} + 1$$

30. Froluste
$$\int_{0}^{5} \frac{dx}{ux+5}$$
 by using simpson $\frac{1}{3}$ at Rule where has and also find $\frac{1}{3}$ by using simpson $\frac{1}{3}$ at Rule where has and also find $\frac{1}{3}$ by $\frac{1}{3}$

$$y_{5} = \frac{1}{4 \cdot 45} = \frac{1}{4 \cdot 15} + 5 = \frac{1}{25} = 0.04$$

$$simpson \frac{1}{3} \cdot 1d \text{ Rule}$$

$$\int_{0}^{5} \frac{dx}{4 \cdot 15} = \frac{1}{3} \left[(y_{0} + y_{5}) + 4 (y_{1} + y_{3}) + 2 (y_{1} + y_{4}) \right]$$

$$= \frac{1}{3} \left[(0.24 + 0.04) + 4 (0.1111 + 0.0588) + 240.0769 + 0.04769 + 0.$$

Using preads method to find the value of y and zero.

I zero 2 given
$$\frac{1}{4t} = z - y$$
 if initial condition $y = 1$ when $x = 0$

Solul Green $\frac{1}{4t} = z - y$ if initial condition $y = 1$ when $x = 0$

Given

 $y = 1$, when $x = 0 \Rightarrow x_0 = 0$, $y_0 = 1$

By preads method

 $y^0 = y_0 + \int_1^x f(x_0 + y_0) dx$
 $f(x, y_0) = x - y_0$
 $= x - 1, x_0 = 0$
 $y^0 = 1 + \int_1^x (x_0 - 1) dx$
 $= 1 + \left[\frac{x_0^2}{2} - 2\right]_0^x$
 $= x_0 + \frac{x_0^2}{2}$
 $= x_0 + \frac{x_0^2}{2}$

$$y(3) = -1+2x - x^{2} + \frac{x^{3}}{6}$$

$$y(3) = -1+2x - x^{2} + \frac{x^{3}}{6}$$

$$y(3) = 1+\int_{0}^{\pi} (-1+2x - x^{2} + \frac{x^{3}}{6}) dx$$

$$= 1+\left[-x + 2\frac{x^{2}}{2} - \frac{x^{3}}{3} + \frac{1/2}{24}y\right]^{2}$$

$$y(3) = 1-x + x^{2} - \frac{x^{3}}{2} + \frac{x^{4}}{24}$$

$$y(4) = y_{0} + \int_{0}^{\pi} f(x, y^{(2)}) dx$$

$$f(x, y(3)) = x - (1-x + x^{2} - \frac{x^{3}}{3} + \frac{x^{4}}{24}y)$$

$$= x - (1+x - x^{2} + \frac{x^{3}}{3} - \frac{x^{4}}{24}y)$$

$$y(4) = 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}y) dx$$

$$= 1+\int_{0}^{\pi} (2x - x^{2} - 1 + \frac{x^{3}}{3} - \frac{x^{4}}{24}$$

8. If
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, find the value of y and $\frac{y-2}{2} = 0.1$ using provides method. given that $\frac{dy}{dx} = \frac{y+x}{y+x}$

form $\frac{dy}{dx} = \frac{y-x}{y+x}$

form $\frac{dy}{dx} = \frac{y-x}{y+x}$

form $\frac{dy}{dx} = \frac{y-x}{y+x}$

form $\frac{dy}{dx} = \frac{y-x}{y+x}$

form $\frac{dy}{dx} = \frac{y-x}{y+x}$
 $\frac{dy}{dx} = \frac{y-x}{y$

$$y(1) = 1 - 2 + 2 \log(1 + x) - x - x + x$$

$$y(1) = y_0 + \int_{20}^{x} f(x, y_0) dx$$

$$f(x, y_0) = \frac{y_0}{y_0} + x$$

$$= \frac{1 - x + 2 \log(1 + x) - x}{1 - x + 2 \log(1 + x)} + x$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)} dx$$

$$= \frac{1 - 2x + 2 \log(1 + x)}{1 + 2 \log(1 + x)}$$

$$= 1+\left[x+\frac{x^{2}}{2}\right]_{0}^{1}$$

$$= 1+\left[x+\frac{x^{2}}{2}\right]_{0}^{1}$$

$$= 1+\left[x+\frac{x^{2}}{2}\right]_{0}^{1}$$

$$y^{(2)} = y_{0}+\int_{2}^{2} f(x,y^{(1)})dx$$

$$f(x,y^{(1)}) = 1+xy^{(1)}$$

$$= 1+x\left[1+x+\frac{x^{2}}{2}\right]_{0}^{1}$$

$$= 1+x+\frac{x^{2}+x^{3}}{2}$$

$$y^{(2)} = \frac{x^{2}}{1+x+x^{2}+x^{3}} + \frac{xy}{3} + \frac{xy}{3}$$

$$y^{(2)} = \frac{x^{2}}{1+x+x^{2}+x^{3}} + \frac{xy}{3} + \frac{xy}{3}$$

$$y^{(3)} = y_{0}+\int_{2}^{x} f(x,y^{(2)}) dx$$

$$f(x,y^{(2)}) = \frac{x^{2}}{1+x}\left[1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{xy}{3}+\frac{xy}{3}\right]$$

$$= 1+x+x^{2}+x^{3}+\frac{xy}{3}+\frac{xy}{3}+\frac{xy}{3}$$

$$y^{(3)} = 1+\int_{2}^{x} f(x,y^{(3)}) dx$$

$$y^{(4)} = y_{0}+\int_{2}^{x} f(x,y^{(4)}) dx$$

$$y^{(5)} = y_{0}+\int_{2}^{x} f(x,y^{(5)}) dx$$

$$y^{(5)} = y_{0}+\int_{2}^{x} f(x,y^{$$

32 = 80+1 A(0.2) = 1+0.2 +(0.2) + (0.2) + (0.2) + (0.2) 2+ (0.2) + y(0.5) = 1.5 + 0.125 + 0.125 + 0.0625 + 0.03125 + 0.015625=1.5+ 0.125+ 0.04167+ 0.00 78125+ 0.00 20833+ 0.0003. y(0.5) = 1.684. For the differential Equation $\frac{dy}{dx} = x - y^2$, y(0) = 0 Colculate Solul and round of the volue into four decimal places

Given $\frac{dy}{dx} = x - y^2$ $\frac{dy}{dx} = x - y^2 - \frac{2}{3}$ F(x,y) - - 0 (E0) = (20) | 20 = 0 | 20 = 0 | 20 = 0 | 10 f(x,y) = x-y2 ->0 yu) = yot ffly, yo) dx 1210000 fly yo) = 21x-yo2 8 18000 + E000 + 20.0 + = x-01000+P000+ 300181= (801 + 1001) = 10 + 1 x dx $y(l) = \left(\frac{\pi^2}{2}\right)^{\alpha} = \frac{\pi^2}{2} \xrightarrow{\beta} \textcircled{0} (wo)^{\beta}$ $| wo|^{\beta} = \left(\frac{\pi^2}{2}\right)^{\alpha} = \frac{\pi^2}{2} \xrightarrow{\beta} \textcircled{0} (wo)^{\beta}$ = yot f(x, yw) dx P(x, yu) = 0x - 412 = x - (x2) 2 0 +80.0 + 11.1 $y^{(2)} = 0 + \int_{0}^{\infty} \left[x - \frac{y}{y} \right] dx$ $= x - \frac{y}{y}$ $= 0 + \int_{0}^{\infty} \left[x - \frac{y}{y} \right] dx$ $= 0 + \int_{0}^{\infty} \left[x - \frac{y}{y} \right] dx$ H(2) = · x2 - x5 -3

$$y(3) = y_0 + \int_{1}^{2} f(x, y(x)) dx$$

$$f(x, y(x)) = x - \left(\frac{x^2}{2} - \frac{25}{20}\right)^2$$

$$= x - \left(\frac{x^2}{4} + \frac{x^{10}}{400} - \frac{2x^7}{400}\right)$$

$$= x - \left(\frac{x^2}{4} + \frac{x^{10}}{400} - \frac{2x^7}{400}\right)$$

$$= x - \left(\frac{x^2}{4} - \frac{x^{10}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$= x - \left(\frac{x^2}{4} - \frac{x^{10}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^2}{20} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^2}{20} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^2}{20} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^2}{20} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^2}{40} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^2}{40} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$y(3) = \left(\frac{x^2}{2} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{20}\right)$$

$$= \left(\frac{x^2}{2} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{100} + \frac{x^{\frac{7}{2}}}{100}\right)$$

$$= \left(\frac{x^2}{2} - \frac{x^2}{20} - \frac{x^{11}}{4000} + \frac{x^{\frac{7}{2}}}{100}\right)$$

$$= \frac{x^2}{2} - \frac{x^{11}}{400} + \frac{x^{\frac{7}{2}}}{100} + \frac{x^{\frac{7}{2}}}{100}$$

$$= \frac{x^{\frac{7}{2}} - \frac{x^{\frac{7}{2}}}{100} + \frac{x^{\frac{7}{2}}}{100}$$

$$= \frac{x^{\frac{7}{2}} - \frac{x^{\frac{7}{2}}}{100} + \frac{x^{\frac{7}{2}}}{100}$$

$$= \frac{x^{\frac{7}{2}} - \frac{x^{\frac{7}{2}}}{100} + \frac{x^{\frac{7}{2}}}{1000} + \frac{x^{\frac{7}{2}}}{100}$$

$$= \frac{x^{\frac{7}{2}} - \frac{x^{\frac{7}{2}}}{1000} + \frac{x^{\frac{7}{2}}}{100}$$

$$= \frac{x^{\frac{7}{2}} - \frac{x^{\frac{7}{2}}}{100} + \frac{x^{\frac{7}{2}}}{10$$

$$y^{(1)} = 9 + \int_{1}^{\infty} (x-1) dx$$

$$y^{(2)} = y_0 + \int_{1}^{\infty} f(x, y^{(1)}) dx$$

$$f(x, y^{(1)}) = x - \left[1 + \frac{x^2}{x^2} - x\right]^2$$

$$= x - \left[1 + \frac{x^2}{x^2} + x\right]^2$$

$$= x - \left[1 + \frac{x^2}{x^2} - x\right]^2$$

$$= x - \left[1 +$$

7. R-k Method of 4th order Consider dy = f(x, y) 11 - JOTK K= 1 [K1+2K2+2K8+K4] - (C) $K_1 = h \cdot f(x_0, y_0)$ $K_2 = h \cdot f(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2})$ k3 = h-f(x0+h, y0+k2) Ku = h.f(xoth, yotk3) Similarly 42=41+K p. C. K= 1 [Ki+2K2+2K3+Ku] $K_1 = h \cdot f(x_1 + h_2, y_1 + k_2)$ $K_3 = h \cdot f(x_1 + h_2, y_1 + k_2)$ $K_4 = h \cdot f(x_1 + h_2, y_1 + k_2)$ $K_4 = h \cdot f(x_1 + h_2, y_1 + k_2)$

Scanned with CamScanne

1. Use R-k method of uth order. Find the value of y of zero given
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = \frac{1}{y}$, $y(0) = \frac{y-x}{y+x}$

$$\Rightarrow f(x_0, y_0)$$

$$= h \cdot f(x_0, y_0)$$

$$= h \cdot f(x_0, y_0)$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x}, y_0 + \frac{1}{x})$$

$$= h \cdot f(x_0 + \frac{1}{x},$$

$$k_{3} = 0.0909$$

$$k_{4} = h.f (x_{0}+h, y_{0}+k_{3})$$

$$= h.f (0+0.1, 1+0.0909)$$

$$= h.f (0.1, 1.0909)$$

$$= 0.1 \left[\frac{1.0909 - 0.1}{1.0909 + 0.1} \right]$$

$$= 0.1 \times 0.9909$$

$$k_{4} = 0.0832$$

$$k = \frac{1}{6} \left[6.1 + 2(0.0909) + 2(0.0909) + 0.0832 \right]$$

$$= \frac{1}{6} \left[0.1 + 2(0.0909) + 2(0.0909) + 0.0832 \right]$$

$$= \frac{0.5069}{6}$$

$$k = 0.09113$$

$$k = 0.0911$$

$$y_{1} = 1.0911, z_{1} = 0.1$$

$$y_{1} = y_{0} + k$$

$$= 1+0.0911$$

$$y_{1} = 1.0911, z_{1} = 0.1$$

$$2. \text{ Use } P.k. \text{ method of } p.th \text{ order to find the volue of } y$$

$$solul \text{ Given } \frac{dy}{dx} = xy+1 = y^{1/2} + y^{1/2} = y^{1/2}$$

$$y(0) = 1, z_{0} = 0, y_{0} = 1, h = 0.1$$

$$k_{1} = h.f(x_{0},y_{0})$$

$$= h.f(x_{0},y_{0})$$

$$\begin{array}{l} = 0.1 \text{ M} \\ \hline k_1 = 0.1 \\ \hline k_2 = k_1 f(x_0 + \frac{k_1}{k_2}, y_0 + \frac{k_1}{k_2}) \\ = k_1 f(0 + \frac{0.1}{2}, q + \frac{0.1}{2}) \\ = k_1 f(0 + \frac{0.1}{2}, q + \frac{0.1}{2}) \\ = k_1 f(0.05, 1 + 0.05) \\ = k_1 f(0.05, 1 + 0.05) \\ = k_2 = 0.10525 \\ \hline k_2 = 0.10525 \\ \hline k_2 = 0.10525 \\ \hline k_3 = k_1 f(x_0 + \frac{k_1}{k_2}, y_0 + \frac{k_2}{k_2}) \\ = k_1 f(0.05, 1 + 0.10523) \\ = k_1 f(0.05, 1 + 0.05265) \\ = k_1$$

```
= 1 [0.1+0.2106+0.2106+0.111]
                                                 = 0.6323 (# tol. 1 tor) 1 11 - pd
                                                    = 0.10538 (10+p. 10+0)+d
                                            K = 0.1054 (800) 71.
                                   41 = 40 + K
                                              =1+0.1054 [1+(201)(200)]10.
                                     y = 1.1054 ; x, 20.1
atalia using R. K method of uth order find y when 2=0.1
                     and 0.2, Given that x=0, when y=1 and dy = xty
Solu
                   Green
                                                                                       K3 = M(noth, yoth)
                       19ver)

\frac{dy}{dx} = xty

f(x,y) = xty = 70

x=0, y=1, x_0=0, y_0=1, h=0:1

x=0, y=1, x_0=0, y_0=1, h=0:1
       (cose(s))

K, = h.f(20, yo)

X12 20th [1+(20520-1)(200)] 10 =
                                                                      -01[1.0526325]
                       K3: 0.10236323 - 0.1083 8.02 1
                              Ki=h.flo,i) (extop dtor) and = NX
                           = h. Flotilino fi 10to/11
                     K1 = 0.1
                       k2 = h. f (20+ h, Yot k)
                                        = h.f (0+0.1 , 1+0.1) (10) 1
                                             = h.f(0.05, 1+0.05)1 10.
                                         = h.f (0.05, 1.05) 0111 .
                                     Ky = 0.111.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 11.0 = 1
                                                             0.14 2(0.10525) 42 (C.VJP.0
                                           K2 = 0.11
```

$$k_{3} = h \cdot f \left(20 + \frac{h}{3}, y_{0} + \frac{h_{2}}{2} \right)$$

$$= h \cdot f \left(0 \cdot 05, 1 \cdot 0 \cdot 058 \right)$$

$$= h \cdot f \left(0 \cdot 05, 1 \cdot 058 \right)$$

$$= h \cdot f \left(0 \cdot 05, 1 \cdot 058 \right)$$

$$= 0 \cdot 1 \left[0 \cdot 05 + 1 \cdot 058 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 105 \right]$$

$$k_{3} = \left[0 \cdot 105 \right]$$

$$k_{4} = h \cdot f \left[20 + h, y_{0} + k_{3} \right]$$

$$= h \cdot f \left[0 \cdot 1, 1 \cdot 105 \right]$$

$$= h \cdot f \left[0 \cdot 1 + 1 \cdot 105 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 2105 \right]$$

$$= 0 \cdot 12105 = 0 \cdot 1211$$

$$k_{4} = 0 \cdot 12105 = 0 \cdot 1211$$

$$k_{5} = \frac{1}{6} \left[0 \cdot 1 + 0 \cdot 22 + 0 \cdot 221 + 0 \cdot 12195 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac{1}{6} \cdot 22 \right]$$

$$= \frac{1}{6} \left[0 \cdot \frac$$

$$k_{1} = h \cdot f(x_{1} \cdot y_{1})$$

$$= h \cdot f(x_{1}$$

```
= 0.14434 67 Total
         K= 1 [K1 +2K2 +2K3+K4]
           = 1 [0.121+210.1321) +210.132A) + 0.1443)
           = \frac{1}{6} \left[ 0.121 + 0.2642 + 0.2654 + 0.1443 \right]
            = 1 [0.7949] + 25014]10-
           = 0.132483 [NJJ8.8]10-
          K = 0.13249
     y2 = y,+K
        = 1.110u + 0.13249 1 dtor ] 7.1 = EX
4. Use R-x method of 4th order to find y when 2=1.2. given
  dy = x2+y2, y(1)=1.5, 201) 1.1.
   Given that (2x^2+y^2)
\frac{dy}{dx} = x^2+y^2 \rightarrow 0
f(x_0, y_0) = x^2+y^2 \rightarrow 0
        y(1)=1.5, 20=1, 40=1.5, h=0.1
  (ase (i) x_1 = 70+h
              = 1+0.1 (4+01) 34 = AR
        K1= h.f(x0, y0)
           = h. f (1, 1.5)
           = h.[1+(15)]
            = 0.15 17 2.25]
             = 0.1[3.25] 08.01 10 -
          k, = 0.325 1080.0 = , X
```

$$K_{3} = h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2}, \frac{h}{2} \right) + h \cdot f \left(20 + \frac{h}{2} \right) + h$$

$$k = \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1120 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1120 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1120 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + \frac{1}{118956} + 0.0803 \right]$$

$$= \frac{1}{6} \left[\frac{1}{1140 - 1}, \frac{1}{118956} + \frac{1}{11$$

$$k_{2} = 0.5(5.884)$$

$$k_{3} = h.f(x, +h, y, +k_{2})$$

$$= h.f(1.1+0.1, 1.8956+0.5884)$$

$$= h.f(1.15, 2.1898)$$

$$= 0.1((1.15)^{2} + (2.1898)^{2})$$

$$= 0.1[6.1178]$$

$$k_{3} = 0.61178 = 0.6118$$

$$k_{4} = h.f(x, +h, y, +k_{3})$$

$$= h.f(1.2, 2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2)^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2} + (2.5074)$$

$$= 0.1[1.2]^{2}$$

```
K = 0.3020val
        42=4,+K
          = 1.8956+ 0.6089
        y_= 2.5045, x2=1.2
3/8/18 4. Girven the initial value problem y'= 1+y2, ylo)=0, yand
  y (0.6) by R.K method of 4th order taking tr=0.2
solul Greven
       y = 1+42 1 0 091 ( ud80 u0 0 11 ] 5.00
        F(xo, yo) = 1+y2 - 0 wordhollso
     y(0) =0, 20=0, 40=0 803120C.0
                                Ky = 0.2082
  case (1)
                        [K12K1+2K3+KN]
       21 = 70th
         (=0.23+ (soco) c+ (soco) e+ co] +.
    K; hf (xo, yo) $ 800 0 + NOU 0 + NOU 0 18-0] 1
      = h.flo, 0)
                                 = 1[1.2162]
      = 0.2[1+0^2]
     K,=0.2
     k2 = h.f(xoth, yotk!)
         = h. f ( oto: 2, oto 2)
                                      = 0+0.2027
          = h.f ( 0.1, 0.1)
          = 0.2[1+10.1)2]
           = 0.2 [1+0.01]
           = 0.2 [1.01]
        K2= 0.202
       k3 = h.f (20+4, 40+ k2)
            = h. F (0+0.2, o+ 0.202) (15050) 11 10
            = h. f ( 0.1, 0.101) + 201000 0 +1 ] 8.0
             = 0.2 [ 1+(0.101)] CF20100.1 10
             20.2[1+0.01020]
              = 0-2[1.010201]
```

```
K3 = 0.2020402
            K3 = 0.202
                            1.8756+ 06089
ku= h.f (xo+h. Yo+k3) c evoe & ep
       = h.f (0+0.2, 0+0.2020)
           = h.f (0.2, 0.2020)
           2 0.2 [1+ (0.202)2]
           =0.2[lf o.ouosou]
                                    4=1+42
            = 0.2[1.040804] = spt1 - (04.04)]
             = 0.2081608 U= W ,0=0x ,0=(s)y
          Ky = 0.2082
    K = \frac{1}{6} \left[ K_1 + 2K_2 + 2K_3 + K_4 \right]
        = 1 [0.2+210.202) +210.208) + 0.2082]
        = + [0.2+0.404 + 0.404 +0.2082] oy.08) ]+; x
                                   = h. flo, 0)
         = 1 [ 1.2162]
                               = 02/1+02
       K = 0.2027
                          Ko = h.flaotho, yotki
    y1= yotk
                        · 4. [ (0+0, 2.0+0)] 4.
      = 0 + 0.2027
    y, =0.2027 x, =0.2
Oselii)
     22 = 71, th
        =0.2+0.2
      ×2=0.4
   Ki= h.f (219, y1)
      = h.f (0.2, 0.2027) = top delock 1.1 = 81
      = h.[i+(0.2027)2] ( 1000 to , 40 to) ?-d-
       = 0.9[1+0.00108729]
       = 0.2[1.04108729](101.0)+1] 50.
     K, 20.2082 (101010-0417
```

$$k_{1} = h \cdot f(x_{1} + \frac{h}{h}, y_{1} + \frac{h}{h})$$

$$= h \cdot f(0.2 + \frac{o.2}{2}, 0.1027 + \frac{o.2082}{2})$$

$$= h \cdot f(0.2 + 0.1, 0.2027 + 0.1041)$$

$$= h \cdot f(0.3, 0.3068)$$

$$= o.2 [1 + 0.3068)^{2}$$

$$= 0.2 [1 + 0.99412624]$$

$$= 0.2 [8825 248]$$

$$k_{2} = 0.2188$$

$$k_{3} = h \cdot f(x_{1} + \frac{h}{h}, y_{1} + \frac{h}{h})$$

$$= h \cdot f(0.2 + 0.1, 0.2027 + 0.2138)$$

$$= h \cdot f(0.2 + 0.1, 0.2027 + 0.10948)$$

$$= h \cdot f(0.3, 0.31218)$$

$$= 0.2 [1 + 0.39218]^{2}$$

$$= 0.2 [1 + 0.99422015]$$

$$= 0.2 [1 + 0.99422015]$$

$$= 0.2 [1 + 0.9422015]$$

$$= 0.9194$$

$$k_{3} = 0.9194$$

$$k_{4} = h \cdot f(x_{1} + h, y_{1} + k_{3})$$

$$= h \cdot f(0.2 + 0.2), 0.2027 + 0.2195)$$

$$= h \cdot f(0.2 + 0.2), 0.2027 + 0.2195$$

$$= h \cdot f(0.4 + 0.2021)^{2}$$

$$= 0.2 [1 + 0.17825284]$$

$$= 0.235650548$$

$$k_{4} = 0.2354$$

```
K= + [K1+2K2+21C3+K4]
         = 1 [0.2082+210.2188)+210.2195)+0.2357]
         = t [0.2082+0.4376+0.439 +0.2357]
          = 1[13205] (2000 8.0)A.N.
           = 0.2200083333 (18108 0) +1 | 50 .
         K = 0.2209 [NEUCIUPO.0 +1] 5.0-
     42= 41+K [USASINPO.1] (0 =
        = 0.2027+0.2201 84(258815000
      = 0.2027 + U.2202

y2 = 0.4228 22,0.4 8818 0 = X

(XII) + d = 8X
          · h.f (0.240,2, 0.1027 + 0.2188)
caselii)
    23 = 22 th upol . 0 + F105.0 (1.0+ 2.0) 7.1.
     x3 =0.6 (81018.0, 8.0) 7.d.
  4K1= h. f(1/2, 42) [ (31818.0) +1 | 5.0 =
      = h.f (0.4, .0.4228) FRO 0 fil c.0 =
       = 0.2[1+10.422812] [ [ ] [ ] [ ] [ ]
      E0.2[1+0-1787599] U8NDIQ.0.
      =0.2[1.17875984] [IPIG.0 = EX
      (=0+235751968 W dtx) 7-11 = NA
      k_1 = 0.2358
k_2 = h - f(22 + h_2) + y_2 + \frac{k_1}{2}
           = h.f.(0.4+0.2), 0.4228+0.2358)
           = h.f (0.5, 0.4228 + 0.1179)
         = h.f (0.5, 0.5407)
= 0.2[140.5407)2
            20.2 [1+0-29235649]
              20.2[1.292356497
```

$$| c_{1} \cdot c_{2} \cdot c_{3} \cdot c_{4} \cdot c$$

```
5. find the value of y(1.1) using R-K method of uth order
the Girven that \frac{dy}{dt} = 32+y^2, y(1) = 1
6 find the value of y(1:1) using R-k method of uth order
    given dy = (42+xy), qu) = 1 = 0+00) 7 1
solul Greven that seperoteceno, 2019-d.
            14 = 32ty2 (2002200, 20) 7.1 =
               flxo, yo) = 3x +y22 -0+1 ] 500 -
             yu)=1, x0=1,004031.0+1 100=
       K,=h.f(20,40) [EDIFZEVOZI] 1.0
         = h.f(1,1) 4812P0350
      K3 = 0.1 [ SL1)+1] 100 = EN
        Ku = h.f (22th, 42ths) [148] 1.00 w
        K_1 = 0.1 [u] = 0.4

K_2 = h \cdot f(x_0 + h) \cdot got \frac{k_1}{2} + 0.01 \cdot got \frac{k_1}{2}
      K2=h.f(1+0:11,1+0:4) d.a) 7.11=
            = h.f(1+0.05, 1+0.2)+1] 0.0
             = h.f(1.05, 1.2) Ju. 0 +1] c.0
              = 0.1 [3(1.05) + (1.2)2) 500
             = 0.1[3.15+1.44] EPS.0 = NX
   2 0.1 [u.59] 28PS 0 = NA

2 0.459 24ST (45 + 18) 1
        (2 k3 = h-f(xoth, yot k2)
                 = h.f (1+0.1, 1+0.459)
                 = h-f (1.05, 1+0.2295)
                  = h.f (1.05, 1.2295)
                   = 0.1 [311.05) + (1.2295)2/
                   = 0.1 [3.15+ 4.51167025]
```

```
=0.1[4.66167025]
                   = 0.466167025
                    =0.4662
            Ku = h.f (xoth, yot K3)
                = h.f(1+0.1, 1+0.4662)
                = h. f (1:1, 1.4662) 11 10
             = 0.1 [3(1.1) + (1.4662)2)
             = 0.1 [3.3+2.14974844]
             = 0;1[6. 44974244]
              = 0.544974244
ky 20.5441
          K= { [K, +2K2+2K3+K4]
             = 1 [0.4+210.459) +210.4662) +0.5441]
             = 1 [0.4+0.918+0.9324+0.5441]
      [(2581] 6 [2:79US] 81113] 100 -
       [25614510146575584028.1] 1.00
           R = 0.4658 ZNJUEU. [] 1.0.
       Mi = Ao+K Egggigneng.o
           = 1+0.4658 = 1.4058 = 1.4058 = 1.4058 = 1.4058 = 1.4058
6. Greven that
        \frac{dy}{dx} = y^2 + xy
\frac{dy}{dx} = y^2 + xy \rightarrow 0
f(x0, y0) = y^2 + xy \rightarrow 0
        Anjs1 yos1 20085/10=
      K1 = h.f(x0, y0) 2432201
           = 0.1 [1+1(1)] NH + EHE + NOTH] 1.0 =
           = 0.1 X 2
          K, =0.2
```

$$k_{2} = h \cdot f \left(1 + 0 \cdot \frac{1}{3}, 1 + 0 \cdot \frac{1}{3} \right)$$

$$= h \cdot f \left(1 + 0 \cdot 05, 1 + 0 \cdot 1 \right)$$

$$= h \cdot f \left(1 + 0 \cdot 05, 1 + 0 \cdot 1 \right)$$

$$= h \cdot f \left(1 + 0 \cdot 05, 1 + 0 \cdot 1 \right)$$

$$= 0 \cdot 1 \left[1 \cdot 0 \cdot 1 + 1 \cdot 1 \cdot 05 \right]$$

$$= 0 \cdot 1 \left[2 \cdot 365 \right]$$

$$k_{2} = 0 \cdot 2365$$

$$k_{3} = h \cdot f \left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2} \right)$$

$$= h \cdot f \left(1 + 0 \cdot 05, 1 + 0 \cdot 11825 \right)$$

$$= h \cdot f \left(1 + 0 \cdot 05, 1 + 0 \cdot 11825 \right)$$

$$= h \cdot f \left(1 \cdot 05, 1 \cdot 11825 \right)$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1741625 \right]$$

$$= 0 \cdot 1 \left[1 \cdot 350483063 + 1 \cdot 1$$

$$= \frac{1}{6} [0.2+2.10.2365) + 2.(0.2u25) + 0.2912]$$

$$= \frac{1}{6} [0.2+0.473+0.485+0.2911]$$

$$= \frac{1}{6} [1.4u91]$$

$$= 0.2415166667$$

$$k = 0.2415$$

$$y_1 = y_0 + k$$

$$= 1 + 0.2u15$$

$$y_1 = 1.2u15$$